public inbox for archer@sourceware.org
 help / color / mirror / Atom feed
* gdbstub initial code, v16
@ 2010-11-15 19:12 Oleg Nesterov
  2010-11-16 20:02 ` Roland McGrath
       [not found] ` <20110215204148.GA17258@host1.dyn.jankratochvil.net>
  0 siblings, 2 replies; 4+ messages in thread
From: Oleg Nesterov @ 2010-11-15 19:12 UTC (permalink / raw)
  To: archer, utrace-devel

[-- Attachment #1: Type: text/plain, Size: 1166 bytes --]

The only change is hardware watchpoints.

Well. I can't say this change is good. Because ugdb uses (unexported)
arch_ptrace() to set debugregs in a very much x86-specific way. However,
I do not see what else can I do.

2.6.32 doesn't have the generic hardware breakpoint handler interface.
And I can't play with thread.debugregX by hand, otherwise ugdb can't
be compiled with the fresh kernels.

arch_ptrace() method should work (I hope) with any kernel. But, this
obviously means more multitracing problems. Perhaps ugdb needs the
"can_use_hw_watchpoints" parameter.

Also, currently the usage of debugregs is far from optimal, hopefully
it is simple to improve.


And. I think it makes sense to change gdb somehow. Even if it works
with gdbserver, it falls back to stepping if the size of wp is too
big for hw (default_region_ok_for_hw_watchpoint). This means that
ugdb can't be faster in this case although it obviously could.


What should I do next? (apart from internal changes, of course)

Say, should I implement vRun? From the very beginnig, I hate the idea
to exec the target from kernel space, but otoh I'm afraid this is
important for gdb users.

Oleg.


[-- Attachment #2: ugdb.c --]
[-- Type: text/plain, Size: 75629 bytes --]

#include <linux/module.h>
#include <linux/proc_fs.h>
#include <linux/utrace.h>
#include <linux/kernel.h>
#include <linux/poll.h>
#include <linux/mm.h>
#include <linux/regset.h>
#include <asm/uaccess.h>

static int o_remote_debug;
module_param_named(echo, o_remote_debug, bool, 0);

#define BUFFER_SIZE		1152
#define PACKET_SIZE		1152

struct pbuf {
	char	*cur, *pkt;
	char	buf[BUFFER_SIZE];
};

static inline void pb_init(struct pbuf *pb)
{
	pb->cur = pb->buf;
	pb->pkt = NULL;
}

enum {
	U_STOP_IDLE = 0,
	U_STOP_PENDING,
	U_STOP_SENT,
};

#define u_after(a, b)	((long)(b) - (long)(a) < 0)

struct ugdb {
	struct list_head	u_processes;
	struct list_head	u_stopped;

	int			u_stop_state;

	struct mutex		u_mutex;
	spinlock_t		u_slock;

	struct ugdb_thread
				*u_cur_tinfo,
				*u_cur_hg,
				*u_cur_hc;

	unsigned long		u_genctr;

	wait_queue_head_t	u_wait;

	int			u_err;

	struct pbuf		u_pbuf;
	char			u_cbuf[PACKET_SIZE];
	int			u_clen;

	sigset_t		u_sig_ign;

	unsigned int
				u_no_ack:1,
				u_allstop:1;
};

static inline void ugdb_ck_stopped(struct ugdb *ugdb)
{
	spin_lock(&ugdb->u_slock);
	WARN_ON(!list_empty(&ugdb->u_stopped) &&
				ugdb->u_stop_state == U_STOP_IDLE);
	WARN_ON(list_empty(&ugdb->u_stopped) &&
				ugdb->u_stop_state == U_STOP_PENDING);
	spin_unlock(&ugdb->u_slock);
}

static struct ugdb *ugdb_create(void)
{
	struct ugdb *ugdb;
	int err;

	err = -ENODEV;
	// XXX: ugly. proc_reg_open() should take care.
	if (!try_module_get(THIS_MODULE))
		goto out;

	err = -ENOMEM;
	ugdb = kzalloc(sizeof(*ugdb), GFP_KERNEL);
	if (!ugdb)
		goto put_module;

	INIT_LIST_HEAD(&ugdb->u_processes);
	INIT_LIST_HEAD(&ugdb->u_stopped);

	mutex_init(&ugdb->u_mutex);
	spin_lock_init(&ugdb->u_slock);

	init_waitqueue_head(&ugdb->u_wait);

	pb_init(&ugdb->u_pbuf);

	return ugdb;

put_module:
	module_put(THIS_MODULE);
out:
	return ERR_PTR(err);
}

struct x86_hw_wp {
	int		nr;
	unsigned long	dr[4];
	unsigned long	dr7;
};

struct p_wp {
	struct rw_semaphore	wp_sem;
	struct list_head	wp_list;
	int			wp_cnt, wp_mem;

	struct x86_hw_wp	hw_wp;
};

static inline void p_wp_init(struct p_wp *p_wp)
{
	init_rwsem(&p_wp->wp_sem);
	INIT_LIST_HEAD(&p_wp->wp_list);
}

static void p_wp_free(struct p_wp *p_wp);

#define P_DETACHING	(1 << 1)
#define P_ZOMBIE	(1 << 2)

struct ugdb_process {
	int			p_pid;
	int			p_state;

	struct p_wp		p_wp;

	struct list_head	p_threads;

	struct ugdb		*p_ugdb;
	struct list_head	p_processes;
};

static inline bool process_alive(struct ugdb_process *process)
{
	return !(process->p_state & P_ZOMBIE);
}

static inline void mark_process_dead(struct ugdb_process *process)
{
	process->p_state |= P_ZOMBIE;
}

static struct ugdb_process *ugdb_create_process(struct ugdb *ugdb, int pid_nr)
{
	struct ugdb_process *process;

	process = kzalloc(sizeof(*process), GFP_KERNEL);
	if (!process)
		return NULL;

	process->p_pid = pid_nr;
	process->p_ugdb = ugdb;
	INIT_LIST_HEAD(&process->p_threads);
	list_add_tail(&process->p_processes, &ugdb->u_processes);

	p_wp_init(&process->p_wp);

	return process;
}

#define T_STOP_RUN	0
#define T_STOP_REQ	(1 << 0)	/* requested by gdb */
#define T_STOP_ALL	(1 << 1)	/* vCont;c:pX.-1, for report_clone */
#define T_STOP_ACK	(1 << 2)	/* visible to vStopped */
#define T_STOP_STOPPED	(1 << 3)	/* reported as stopped to gdb */
					/* TASK_TRACED + deactivated ? */

#define T_EV_NONE		0
#define T_EV_EXIT		(1 << 24)
#define T_EV_SIGN		(2 << 24)

#define T_EV_TYPE(event)	((0xff << 24) & (event))
#define T_EV_DATA(event)	(~(0xff << 24) & (event))

#define HW_WP_NONE	0
#define HW_WP_ACTIVE	1
#define HW_WP_INVALID	2

struct t_wp {
	struct wp*	wp_cur;

	int		hw_wp_state;
};

static inline void t_wp_init(struct ugdb_thread *thread)
{
}

#define T_STEP_HARD	1
#define T_STEP_SOFT	2

struct ugdb_thread {
	int			t_tid;
	int			t_stop_state;
	int			t_stop_event;
	int			t_step; 	// XXX: move me into t_stop_event

	struct t_wp		t_wp;

	siginfo_t		*t_siginfo;

	struct ugdb		*t_ugdb;
	struct ugdb_process	*t_process;

	unsigned long		t_genctr;

	struct list_head	t_threads;
	struct list_head	t_stopped;

	struct pid		*t_spid;

	struct utrace_engine	*t_engine;
};

static inline bool thread_alive(struct ugdb_thread *thread)
{
	WARN_ON((thread->t_tid != 0) != process_alive(thread->t_process));

	return thread->t_tid != 0;
}

static inline void mark_thread_dead(struct ugdb_thread *thread)
{
	mark_process_dead(thread->t_process);
	thread->t_tid = 0;
}

/*
 * The thread should be alive, and it can't pass ugdb_report_death()
 * if the caller holds ugdb->u_mutex. However the tracee can be
 * reaped anyway, pid_task() can return NULL after detach_pid().
 */
static inline struct task_struct *thread_to_task(struct ugdb_thread *thread)
{
	BUG_ON(!thread_alive(thread));

	return pid_task(thread->t_spid, PIDTYPE_PID);
}

static struct ugdb_thread *ugdb_create_thread(struct ugdb_process *process,
						struct pid *spid)
{
	struct ugdb_thread *thread;

	thread = kzalloc(sizeof(*thread), GFP_KERNEL);
	if (!thread)
		return NULL;

	thread->t_tid = pid_vnr(spid);
	thread->t_spid = get_pid(spid);
	thread->t_process = process;
	thread->t_ugdb = process->p_ugdb;
	thread->t_genctr = thread->t_ugdb->u_genctr;
	INIT_LIST_HEAD(&thread->t_stopped);
	list_add_tail(&thread->t_threads, &process->p_threads);

	t_wp_init(thread);

	return thread;
}

static void ugdb_del_stopped(struct ugdb *ugdb, struct ugdb_thread *thread)
{
	if (!list_empty(&thread->t_stopped)) {
		WARN_ON(!(thread->t_stop_state & T_STOP_ACK));

		spin_lock(&ugdb->u_slock);
		list_del_init(&thread->t_stopped);

		if (!(thread->t_stop_state & T_STOP_STOPPED)) {
			if (ugdb->u_stop_state == U_STOP_PENDING &&
					list_empty(&ugdb->u_stopped))
				ugdb->u_stop_state = U_STOP_IDLE;
		}
		spin_unlock(&ugdb->u_slock);
	}

	thread->t_stop_state = T_STOP_RUN;
}

static void ugdb_destroy_thread(struct ugdb_thread *thread)
{
	struct ugdb *ugdb = thread->t_ugdb;

	ugdb_ck_stopped(ugdb);

	ugdb_del_stopped(ugdb, thread);

	/* NULL if attach fails */
	if (thread->t_engine)
		utrace_engine_put(thread->t_engine);

	list_del(&thread->t_threads);
	put_pid(thread->t_spid);
	kfree(thread);
}

static int ugdb_set_events(struct ugdb_thread *thread,
				unsigned long events)
{
	WARN_ON(!thread_alive(thread));

	events |= (UTRACE_EVENT(CLONE) | UTRACE_EVENT(DEATH) |
			UTRACE_EVENT_SIGNAL_ALL);

	//XXX: I think utrace_get_signal() is buggy !!!!!!!!!!!!
	events |= UTRACE_EVENT(QUIESCE);

	return utrace_set_events_pid(thread->t_spid, thread->t_engine,
					events);
}

static int ugdb_control(struct ugdb_thread *thread,
				enum utrace_resume_action action)
{
	// XXX: temporary racy check
	WARN_ON(!thread_alive(thread) && action != UTRACE_DETACH);

	return utrace_control_pid(thread->t_spid, thread->t_engine,
					action);
}

static const struct utrace_engine_ops ugdb_utrace_ops;

static void ugdb_detach_thread(struct ugdb_thread *thread, bool running)
{
	int ret;

	ret = ugdb_control(thread, UTRACE_DETACH);

	/* engine->flags == 0, it can't run a callback */
	if (!running)
		return;

	/* callbacks are no longer possible */
	if (!ret)
		return;

	if (ret == -EINPROGRESS) {
		/*
		 * We raced with a callback, it can't be ->report_death().
		 * However, we can not use utrace_barrier_pid(), it can
		 * hang "forever" until the next utrace_resume() if it
		 * sees ->ops == &utrace_detached_ops set by us, but the
		 * tracee is no longer running.
		 *
		 * But: we have no choice.
		 */
		do {
			ret = utrace_barrier_pid(thread->t_spid,
						thread->t_engine);
		} while (ret == -ERESTARTSYS);
	} else {
		/*
		 * Nothing can help us to synchronize with ->report_death.
		 * We do not know if it was already called or not, we can't
		 * know if it is running. utrace_barrier_pid() can't help,
		 * it can return zero and then later ->report_death() will
		 * be called. Or it can return -ESRCH just because the task
		 * was alredy released and pid_task() == NULL, but this
		 * doesn't mean ->report_death() can't be called later.
		 *
		 * Fortunately, we know that the tracee is dying or dead,
		 * engine->ops should be changed after ugdb_report_death()
		 * returns UTRACE_DETACH.
		 */
		 while (thread->t_engine->ops == &ugdb_utrace_ops) {
		 	schedule_timeout_uninterruptible(1);
		 }
	}
}

/*
 * returns NULL if raced with exit(), or ERR_PTR().
 */
static struct ugdb_thread *ugdb_attach_thread(struct ugdb_process *process,
						struct pid *spid)
{
	struct ugdb_thread *thread;
	struct utrace_engine *engine;
	struct task_struct *task;

	thread = ugdb_create_thread(process, spid);
	if (!thread)
		goto err;

	engine = utrace_attach_pid(thread->t_spid, UTRACE_ATTACH_CREATE,
					&ugdb_utrace_ops, thread);
	if (IS_ERR(engine))
		goto free_thread;

	thread->t_engine = engine;

	if (ugdb_set_events(thread, 0))
		goto detach_thread;

	return thread;

detach_thread:
	ugdb_detach_thread(thread, false);
free_thread:
	ugdb_destroy_thread(thread);
err:
	rcu_read_lock();
	task = pid_task(spid, PIDTYPE_PID);
	if (task && task->exit_state)
		task = NULL;
	rcu_read_unlock();

	return task ? ERR_PTR(-ENOMEM) : NULL;
}

static inline bool is_subthread(struct ugdb_process *process,
				struct ugdb_thread *thread)
{
	return thread && thread->t_process == process;
}

static inline void ugdb_reset_tinfo(struct ugdb *ugdb)
{
	ugdb->u_cur_tinfo = NULL;
}

static void ugdb_destroy_process(struct ugdb_process *process)
{
	struct ugdb *ugdb = process->p_ugdb;
	struct ugdb_thread *thread;

	mutex_lock(&ugdb->u_mutex);
	process->p_state |= P_DETACHING;
	list_del(&process->p_processes);

	if (is_subthread(process, ugdb->u_cur_hg))
		ugdb->u_cur_hg = NULL;
	if (is_subthread(process, ugdb->u_cur_hc))
		ugdb->u_cur_hc = NULL;

	/* I hope gdb won't do detach from under qfThreadInfo */
	if (ugdb->u_cur_tinfo) {
		printk(KERN_WARNING "ugdb: detach from under qfThreadInfo\n");
		ugdb_reset_tinfo(ugdb);
	}
	mutex_unlock(&ugdb->u_mutex);

	while (!list_empty(&process->p_threads)) {
		thread = list_first_entry(&process->p_threads,
				struct ugdb_thread, t_threads);
		ugdb_detach_thread(thread, true);
		ugdb_destroy_thread(thread);
	}

	BUG_ON(!list_empty(&process->p_threads));

	p_wp_free(&process->p_wp);

	kfree(process);
}

static void ugdb_destroy(struct ugdb *ugdb)
{
	struct ugdb_process *process;

	while (!list_empty(&ugdb->u_processes)) {
		process = list_first_entry(&ugdb->u_processes,
				struct ugdb_process, p_processes);
		ugdb_destroy_process(process);
	}

	BUG_ON(!list_empty(&ugdb->u_processes));
	BUG_ON(!list_empty(&ugdb->u_stopped));

	module_put(THIS_MODULE);
	kfree(ugdb);
}

static struct pid *get_next_pid(struct pid *main, struct pid *curr)
{
	struct task_struct *task;
	struct sighand_struct *sighand;
	struct pid *next = NULL;

	rcu_read_lock();
	/*
	 * If task/sighand is NULL we return NULL. This is fine if
	 * the caller is get_first_pid(), we should abort attaching.
	 *
	 * But this can also happen if curr was already attached,
	 * and this is wrong. Fortunately, this is very unlikely
	 * case. The attached sub-thread can't pass ->report_death,
	 * if it was reaped the caller of release_task() must be
	 * ptracer who re-parented this thread.
	 */
	task = pid_task(curr, PIDTYPE_PID);
	if (!task)
		goto unlock_rcu;

	// XXX: we need lock_task_sighand() but it is not exported,
	// so we ran race with de_thread().
	sighand = rcu_dereference(task->sighand);
	if (!sighand)
		goto unlock_rcu;

	spin_lock_irq(&sighand->siglock);
	for (;;) {
		task = next_thread(task);

		// XXX: if main is not leader we can race with exec.
		if (task_pid(task) == main)
			break;

		if (!task->exit_state) {
			next = get_pid(task_pid(task));
			break;
		}
	}
	spin_unlock_irq(&sighand->siglock);
unlock_rcu:
	rcu_read_unlock();

	return next;
}

static struct pid *get_first_pid(struct pid *main)
{
	struct task_struct *leader;

	rcu_read_lock();
	leader = pid_task(main, PIDTYPE_PID);
	if (leader && leader->exit_state)
		leader = NULL;
	rcu_read_unlock();

	/*
	 * The group-leader is alive, try to attach. If it exits
	 * before utrace_set_events(), get_first_pid() will be
	 * called again and it will notice ->exit_state != 0.
	 */
	if (leader)
		return get_pid(main);

	/*
	 * Try to find the live sub-thread. If the whole group
	 * is dead it returns NULL and the caller aborts.
	 */
	return get_next_pid(main, main);
}

static int ugdb_attach_all_threads(struct ugdb *ugdb,
				struct ugdb_process *process,
				struct pid *main_pid)
{
	struct ugdb_thread *thread;
	struct pid *curr_pid;

	mutex_lock(&ugdb->u_mutex);

	for (;;) {
		curr_pid = get_first_pid(main_pid);
		if (!curr_pid)
			goto abort;

		thread = ugdb_attach_thread(process, curr_pid);
		put_pid(curr_pid);

		if (IS_ERR(thread))
			goto abort;

		if (thread)
			break;
	}

	for (;;) {
		struct pid *next_pid;

		next_pid = get_next_pid(main_pid, curr_pid);
		if (!next_pid)
			break;

		thread = ugdb_attach_thread(process, next_pid);
		put_pid(next_pid);

		if (IS_ERR(thread))
			goto abort;

		if (!thread)
			continue;

		curr_pid = next_pid;
	}

	mutex_unlock(&ugdb->u_mutex);
	return 0;

abort:
	mutex_unlock(&ugdb->u_mutex);
	return -1;
}

static int ugdb_attach(struct ugdb *ugdb, int pid_nr)
{
	struct pid *main_pid;
	struct ugdb_process *process;
	int err;

	// XXX: check if exists
	// XXX: check if group leader ?

	err = -ESRCH;
	main_pid = find_get_pid(pid_nr);
	if (!main_pid)
		goto out;

	err = -ENOMEM;
	process = ugdb_create_process(ugdb, pid_nr);
	if (!process)
		goto free_pid;

	err = ugdb_attach_all_threads(ugdb, process, main_pid);
	if (err)
		ugdb_destroy_process(process);

free_pid:
	put_pid(main_pid);
out:
	return err;
}

static struct ugdb_process *ugdb_find_process(struct ugdb *ugdb, int pid)
{
	struct ugdb_process *process;

	list_for_each_entry(process, &ugdb->u_processes, p_processes) {
		if (process->p_pid == pid)
			return process;
	}

	return NULL;
}

static struct ugdb_thread *ugdb_find_thread(struct ugdb *ugdb, int pid, int tid)
{
	struct ugdb_process *process;
	struct ugdb_thread *thread;

	list_for_each_entry(process, &ugdb->u_processes, p_processes) {
		if (unlikely(!process_alive(process)))
			continue;
		if (pid && process->p_pid != pid)
			continue;

		list_for_each_entry(thread, &process->p_threads, t_threads) {
			if (WARN_ON(!thread_alive(thread)))
				continue;
			if (!tid || thread->t_tid == tid)
				return thread;
		}

		if (pid)
			break;
	}

	return NULL;
}

static int ugdb_detach(struct ugdb *ugdb, int pid)
{
	struct ugdb_process *process = ugdb_find_process(ugdb, pid);

	if (!process)
		return -1;

	ugdb_destroy_process(process);
	return 0;
}

#define CUR_TINFO_END	((struct ugdb_thread *)1)

static struct ugdb_thread *ugdb_advance_tinfo(struct ugdb *ugdb)
{
	struct ugdb_thread *cur, *nxt;
	struct ugdb_process *process;

	cur = ugdb->u_cur_tinfo;

	if (cur == CUR_TINFO_END) {
		ugdb->u_cur_tinfo = NULL;
		return NULL;
	}

	if (!cur) {
		list_for_each_entry(process, &ugdb->u_processes, p_processes) {
			if (unlikely(!process_alive(process)))
				continue;

			if (!list_empty(&process->p_threads)) {
				cur = list_first_entry(&process->p_threads,
						struct ugdb_thread, t_threads);
				break;
			}
		}

		if (!cur)
			return NULL;
	}

	process = cur->t_process;

	if (list_is_last(&cur->t_threads, &process->p_threads)) {
		nxt = CUR_TINFO_END;

		list_for_each_entry_continue(process, &ugdb->u_processes, p_processes) {
			if (unlikely(!process_alive(process)))
				continue;

			if (!list_empty(&process->p_threads)) {
				nxt = list_first_entry(&process->p_threads,
						struct ugdb_thread, t_threads);
				break;
			}
		}
	} else {
		nxt = list_first_entry(&cur->t_threads,
				struct ugdb_thread, t_threads);
	}

	ugdb->u_cur_tinfo = nxt;
	return cur;
}

// -----------------------------------------------------------------------------
static bool ugdb_add_stopped(struct ugdb_thread *thread, int stop_event)
{
	struct ugdb *ugdb = thread->t_ugdb;
	bool ret = false;

	ugdb_ck_stopped(ugdb);

	spin_lock(&ugdb->u_slock);
	if (stop_event == T_EV_NONE) {
		if (WARN_ON(thread->t_stop_state & T_STOP_ACK))
			goto unlock;
		if (WARN_ON(!list_empty(&thread->t_stopped)))
			goto unlock;

		/* raced with ugdb_cont_thread() */
		if (!(thread->t_stop_state & T_STOP_REQ))
			goto unlock;
	}

	if (thread->t_stop_state & T_STOP_ACK) {
		if (thread->t_stop_state & T_STOP_STOPPED)
			/*
			 * Alas, we can't report this event. We already
			 * reported T00 and there is no way to inform gdb
			 * the state of tracee was changed.
			 */
			goto unlock;
	} else {
		WARN_ON(thread->t_stop_state & T_STOP_STOPPED);

		thread->t_stop_state |= T_STOP_ACK;
		list_add_tail(&thread->t_stopped, &ugdb->u_stopped);

		if (ugdb->u_stop_state == U_STOP_IDLE) {
			ugdb->u_stop_state = U_STOP_PENDING;
			wake_up_all(&ugdb->u_wait);
		}
	}

	thread->t_stop_event = stop_event;
	ret = true;
unlock:
	spin_unlock(&ugdb->u_slock);

	return ret;
}

static void ugdb_process_exit(struct ugdb_thread *thread)
{
	struct ugdb *ugdb = thread->t_ugdb;
	int status;

	BUG_ON(!thread_alive(thread));

	ugdb_del_stopped(ugdb, thread);
	mark_thread_dead(thread);

	// XXX: OOPS, we can't read ->signal->group_exit_code !!!
	status = current->exit_code;
	if (ugdb_add_stopped(thread, T_EV_EXIT | status))
		return;

	WARN_ON(1);
}

static int ugdb_stop_thread(struct ugdb_thread *thread, bool all)
{
	struct ugdb *ugdb = thread->t_ugdb;
	int err;

	WARN_ON(!thread_alive(thread));

	ugdb_ck_stopped(ugdb);

	if (thread->t_stop_state != T_STOP_RUN) {
		if (!all || (thread->t_stop_state & T_STOP_ALL))
			return 0;
		/*
		 * Otherwise we should set T_STOP_ALL anyway,
		 *
		 *	(gdb) interrupt &
		 *	(gbd) interrupt -a &
		 *
		 * to ensure -a actually works if it races with clone.
		 */
	}

	err = -EALREADY;
	spin_lock(&ugdb->u_slock);
	if (thread->t_stop_state == T_STOP_RUN) {
		thread->t_stop_state = T_STOP_REQ;
		err = 0;
	}

	/*
	 * We hold ugdb->u_mutex, we can't race with ugdb_report_clone().
	 * ugdb->u_slock protects us against ugdb_add_stopped(). We can
	 * change ->t_stop_state even if we did not initiate this stop.
	 */
	if (all)
		thread->t_stop_state |= T_STOP_ALL;
	spin_unlock(&ugdb->u_slock);

	if (err)
		return 0;

	// XXX: we don't do UTRACE_STOP! this means we can't
	// stop TASK_STOPEED task. Need to discuss jctl issues.
	// if we do UTRACE_STOP we should call ugdb_add_stopped().

	ugdb_set_events(thread, UTRACE_EVENT(QUIESCE));
	err = ugdb_control(thread, UTRACE_INTERRUPT);
	if (err && err != -EINPROGRESS)
		return err;
	return 1;
}

static int ugdb_cont_thread(struct ugdb_thread *thread, bool all, int t_step)
{
	struct ugdb *ugdb = thread->t_ugdb;
	int ret;

	WARN_ON(!thread_alive(thread));

	ugdb_ck_stopped(ugdb);

	// XXX: gdb shouldn't explicitly cont an unreported thread
	WARN_ON(!all && !(thread->t_stop_state & T_STOP_STOPPED));

	if (thread->t_stop_state == T_STOP_RUN)
		return 0;

	spin_lock(&ugdb->u_slock);
	/*
	 * Nothing to do except clear the pending T_STOP_REQ.
	 */
	ret = 0;
	if (!(thread->t_stop_state & T_STOP_ACK))
		goto set_run;

	/*
	 * Alas. Thanks to remote protocol, we can't cont this
	 * thread. We probably already sent the notification, we
	 * can do nothing except ack that %Stop later in response
	 * to vStopped.
	 *
	 * OTOH, gdb shouldn't send 'c' if this thread was not
	 * reported as stopped. However, this means that gdb can
	 * see the new %Stop:T00 notification after vCont;c:pX.-1,
	 * it should handle this case correctly anyway. I hope.
	 *
	 * If this stop was not initiated by gdb we should not
	 * cancel it too, this event should be reported first.
	 */
	ret = -1;
	if (!(thread->t_stop_state & T_STOP_STOPPED))
		goto unlock;

	ret = 1;
	list_del_init(&thread->t_stopped);
set_run:
	thread->t_stop_state = T_STOP_RUN;
unlock:
	spin_unlock(&ugdb->u_slock);

	if (ret >= 0) {
		unsigned long events = 0;
		enum utrace_resume_action action = UTRACE_RESUME;

		thread->t_step = t_step;
		if (t_step) {
			/* to correctly step over syscall insn */
			events |= UTRACE_EVENT(SYSCALL_EXIT);
			action = UTRACE_SINGLESTEP;
		}

		// XXX: OK, this all is racy, and I do not see any
		// solution except: implement UTRACE_STOP_STICKY and
		// move this code up under the lock, or add
		// utrace_engine_ops->notify_stopped().

		// 1. UTRACE_RESUME is racy, this is fixeable.
		// 2. we need utrace_barrier() to close the race
		//    with the callback which is going to return
		//    UTRACE_STOP, but:
		//    	a) we can deadlock (solveable)
		//	b) in this case UTRACE_RESUME can race with
		//	   another stop initiated by tracee itself.

		ugdb_set_events(thread, events);
		ugdb_control(thread, action);
	}

	return ret;
}

static struct ugdb_thread *ugdb_next_stopped(struct ugdb *ugdb)
{
	struct ugdb_thread *thread = NULL;

	// XXX: temporary racy check
	WARN_ON(ugdb->u_stop_state == U_STOP_IDLE);

	spin_lock(&ugdb->u_slock);
	if (list_empty(&ugdb->u_stopped)) {
		ugdb->u_stop_state = U_STOP_IDLE;
	} else {
		ugdb->u_stop_state = U_STOP_SENT;

		thread = list_first_entry(&ugdb->u_stopped,
					struct ugdb_thread, t_stopped);

		thread->t_stop_state |= T_STOP_STOPPED;
		list_del_init(&thread->t_stopped);
	}
	spin_unlock(&ugdb->u_slock);

	return thread;
}

// -----------------------------------------------------------------------------
static bool ugdb_stop_pending(struct ugdb_thread *thread)
{
	if (!(thread->t_stop_state & T_STOP_REQ))
		return false;

	if (!(thread->t_stop_state & T_STOP_ACK))
		return ugdb_add_stopped(thread, T_EV_NONE);

	return true;
}

static u32 ugdb_report_quiesce(u32 action, struct utrace_engine *engine,
					unsigned long event)
{
	struct ugdb_thread *thread = engine->data;

	WARN_ON(!thread_alive(thread));

	/* ensure SIGKILL can't race with stop/cont in progress */
	if (event != UTRACE_EVENT(DEATH)) {
		if (ugdb_stop_pending(thread))
			return UTRACE_STOP;
	}

	return utrace_resume_action(action);
}

static int cont_signal(struct ugdb_thread *thread,
				struct k_sigaction *return_ka)
{
	int signr = T_EV_DATA(thread->t_stop_event);
	siginfo_t *info = thread->t_siginfo;

	thread->t_siginfo = NULL;

	if (WARN_ON(!valid_signal(signr)))
		return 0;

	if (!signr)
		return signr;
	/*
	 * Update the siginfo structure if the signal has changed.
	 */
	if (info->si_signo != signr) {
		info->si_signo = signr;
		info->si_errno = 0;
		info->si_code = SI_USER;
		info->si_pid = 0;
		info->si_uid = 0;
	}

	/* If the (new) signal is now blocked, requeue it. */
	if (sigismember(&current->blocked, signr)) {
		send_sig_info(signr, info, current);
		signr = 0;
	} else {
		spin_lock_irq(&current->sighand->siglock);
		*return_ka = current->sighand->action[signr - 1];
		spin_unlock_irq(&current->sighand->siglock);
	}

	return signr;
}

static bool wp_next_soft_trap(struct ugdb_thread *thread, siginfo_t *info);

static u32 ugdb_report_signal(u32 action, struct utrace_engine *engine,
				struct pt_regs *regs,
				siginfo_t *info,
				const struct k_sigaction *orig_ka,
				struct k_sigaction *return_ka)
{
	struct ugdb_thread *thread = engine->data;
	struct ugdb *ugdb = thread->t_ugdb;
	int signr;

	WARN_ON(!thread_alive(thread));

	switch (utrace_signal_action(action)) {
	case UTRACE_SIGNAL_HANDLER:
		if (WARN_ON(thread->t_siginfo))
			thread->t_siginfo = NULL;

		if (thread->t_step) {
			WARN_ON(orig_ka);
			// user_single_step_siginfo(current, regs, info);
			memset(info, 0, sizeof(*info));
			info->si_signo = SIGTRAP;
			break;
		}

		/* Fall through */

	default:
		if (orig_ka)
			break;

		/*
		 * It was UTRACE_SIGNAL_REPORT, but another tracer has
		 * changed utrace_report->result to deliver or stop.
		 * Fall through.
		 */

	case UTRACE_SIGNAL_REPORT:
		if (!thread->t_siginfo) {
			/* UTRACE_INTERRUPT from ugdb_report_syscall_exit() */
			if (thread->t_step) {
				WARN_ON(orig_ka);
				// user_single_step_siginfo(current, regs, info);
				memset(info, 0, sizeof(*info));
				info->si_signo = SIGTRAP;
				break;
			}
		} else {
			if (WARN_ON(thread->t_siginfo != info))
				return action;
			WARN_ON(T_EV_TYPE(thread->t_stop_event) != T_EV_SIGN);

			signr = cont_signal(thread, return_ka);
			if (signr) {
				/*
				 * Consider:
				 *
				 *	(gdb) signal SIG &
				 *	(gdb) interrupt
				 *
				 * We shouldn't miss the new stop request, so
				 * we do not return from here.
				 */
				action = UTRACE_RESUME | UTRACE_SIGNAL_DELIVER;
			}
		}

		if (ugdb_stop_pending(thread))
			return UTRACE_STOP | utrace_signal_action(action);

		if (thread->t_step)
			return UTRACE_SINGLESTEP | utrace_signal_action(action);
		return action;
	}

	WARN_ON(thread->t_siginfo);

	signr = info->si_signo;
	if (WARN_ON(!signr || !valid_signal(signr)))
		return action;

	if (wp_next_soft_trap(thread, info)) {
		if (ugdb_stop_pending(thread))
			return UTRACE_STOP | UTRACE_SIGNAL_IGN;

		return UTRACE_SINGLESTEP | UTRACE_SIGNAL_IGN;
	}

	if (sigismember(&ugdb->u_sig_ign, signr))
		return action;

	if (ugdb_add_stopped(thread, T_EV_SIGN | signr)) {
		thread->t_siginfo = info;
		/*
		 * Make sure the subsequent UTRACE_SIGNAL_REPORT clears
		 * ->t_siginfo before return from get_signal_to_deliver().
		 */
		if (utrace_control(current, engine, UTRACE_INTERRUPT))
			WARN_ON(1);
		return UTRACE_STOP | UTRACE_SIGNAL_IGN;
	}

	/*
	 * We already reported T00 to gdb. We can't change our state,
	 * we are already stopped from gdb pov. Push back this signal
	 * to report it later, after "continue".
	 *
	 * Not multitrace-friendly.
	 */
	return UTRACE_STOP | UTRACE_SIGNAL_REPORT | UTRACE_SIGNAL_HOLD;
}

static u32 ugdb_report_syscall_exit(u32 action, struct utrace_engine *engine,
					struct pt_regs *regs)
{
	struct ugdb_thread *thread = engine->data;

	if (thread->t_step)
		return UTRACE_INTERRUPT;

	printk(KERN_INFO "ugdb: unexpected SYSCALL_EXIT\n");
	return action;
}

static bool is_already_attached(struct ugdb_process *process,
				struct task_struct *task)
{
	struct ugdb_thread *thread;

	if (likely(!task_utrace_flags(task)))
		return false;

	/*
	 * Currently there is no way to know if it was attached by us.
	 * We can't trust utrace_attach_task(UTRACE_ATTACH_MATCH_OPS),
	 * ugdb attaches without UTRACE_ATTACH_EXCLUSIVE. We have to
	 * check every attached thread.
	 *
	 * This is really bad, but without multitracing this can only
	 * happen in unlikely case right after ugdb_attach_all_threads().
	 */
	list_for_each_entry(thread, &process->p_threads, t_threads) {
		if (thread->t_spid == task_pid(task))
			return true;
	}

	return false;
}

static void ugdb_wp_clone(struct ugdb_thread *thread);

static u32 ugdb_report_clone(u32 action, struct utrace_engine *engine,
			       unsigned long clone_flags,
			       struct task_struct *task)
{
	struct ugdb_thread *thread = engine->data;
	struct ugdb_process *process = thread->t_process;
	struct ugdb *ugdb = thread->t_ugdb;
	struct ugdb_thread *new_thread;

	WARN_ON(!thread_alive(thread));

	if (!(clone_flags & CLONE_THREAD))
		goto out;

	mutex_lock(&ugdb->u_mutex);
	if (process->p_state & P_DETACHING)
		goto unlock;
	/*
	 * This can only happen if we raced with ugdb_attach() which
	 * could attach both current and the new PF_STARTING child.
	 */
	if (unlikely(is_already_attached(process, task)))
		goto unlock;

	new_thread = ugdb_attach_thread(process, task_pid(task));
	BUG_ON(!new_thread);

	if (WARN_ON(IS_ERR(new_thread)))
		goto unlock;

	if (thread->t_stop_state & T_STOP_ALL)
		ugdb_stop_thread(new_thread, false);
	else
		ugdb_wp_clone(new_thread);

unlock:
	mutex_unlock(&ugdb->u_mutex);
out:
	return utrace_resume_action(action);
}

static u32 ugdb_report_death(struct utrace_engine *engine,
				bool group_dead, int signal)
{
	struct ugdb_thread *thread = engine->data;
	struct ugdb_process *process = thread->t_process;
	struct ugdb *ugdb = thread->t_ugdb;

	WARN_ON(!thread_alive(thread));

	mutex_lock(&ugdb->u_mutex);
	if (process->p_state & P_DETACHING)
		goto unlock;

	if (ugdb->u_cur_hg == thread)
		ugdb->u_cur_hg = NULL;
	if (ugdb->u_cur_hc == thread)
		ugdb->u_cur_hc = NULL;

	if (ugdb->u_cur_tinfo == thread)
		ugdb_advance_tinfo(ugdb);

	if (list_is_singular(&process->p_threads))
		ugdb_process_exit(thread);
	else
		ugdb_destroy_thread(thread);

unlock:
	mutex_unlock(&ugdb->u_mutex);

	return UTRACE_DETACH;
}

static const struct utrace_engine_ops ugdb_utrace_ops = {
	.report_quiesce		= ugdb_report_quiesce,
	.report_signal		= ugdb_report_signal,
	.report_syscall_exit	= ugdb_report_syscall_exit,
	.report_clone		= ugdb_report_clone,
	.report_death		= ugdb_report_death,
};

// -----------------------------------------------------------------------------
static inline int pb_size(struct pbuf *pb)
{
	return pb->cur - pb->buf;
}

static inline int pb_room(struct pbuf *pb)
{
	return pb->buf + BUFFER_SIZE - pb->cur;
}

static inline void pb_putc(struct pbuf *pb, char c)
{
	if (WARN_ON(pb->cur >= pb->buf + BUFFER_SIZE))
		return;
	*pb->cur++ = c;
}

static void pb_memcpy(struct pbuf *pb, const void *data, int size)
{
	if (WARN_ON(size > pb_room(pb)))
		return;
	memcpy(pb->cur, data, size);
	pb->cur += size;
}

static inline void pb_puts(struct pbuf *pb, const char *s)
{
	pb_memcpy(pb, s, strlen(s));
}

static inline void pb_putb(struct pbuf *pb, unsigned char val)
{
	static char hex[] = "0123456789abcdef";
	pb_putc(pb, hex[(val & 0xf0) >> 4]);
	pb_putc(pb, hex[(val & 0x0f) >> 0]);
}

static void pb_putbs(struct pbuf *pb, const char *data, int size)
{
	while (size--)
		pb_putb(pb, *data++);
}

static inline void __pb_start(struct pbuf *pb, char pref)
{
	WARN_ON(pb->pkt);
	pb_putc(pb, pref);
	pb->pkt = pb->cur;
}

static inline void pb_start(struct pbuf *pb)
{
	return __pb_start(pb, '$');
}

static inline void pb_cancel(struct pbuf *pb)
{
	if (WARN_ON(!pb->pkt))
		return;

	pb->cur = pb->pkt - 1;
	pb->pkt = NULL;
}

static void pb_end(struct pbuf *pb)
{
	unsigned char csm = 0;
	char *pkt = pb->pkt;

	pb->pkt = NULL;
	if (WARN_ON(!pkt))
		return;

	while (pkt < pb->cur) {
		/* pb_qfer() can write '%' */
		WARN_ON(*pkt == '$' || *pkt == '#');
		csm += (unsigned char)*pkt++;
	}

	pb_putc(pb, '#');
	pb_putb(pb, csm);
}

static inline void pb_packs(struct pbuf *pb, const char *s)
{
	pb_start(pb);
	pb_puts(pb, s);
	pb_end(pb);
}

static void __attribute__ ((format(printf, 3, 4)))
__pb_format(struct pbuf *pb, bool whole_pkt, const char *fmt, ...)
{
	int room = pb_room(pb), size;
	va_list args;

	if (whole_pkt)
		pb_start(pb);

	va_start(args, fmt);
	size = vsnprintf(pb->cur, room, fmt, args);
	va_end(args);

	if (WARN_ON(size > room))
		return;

	pb->cur += size;

	if (whole_pkt)
		pb_end(pb);
}

#define pb_printf(pb, args...)	__pb_format((pb), false, args)
#define pb_packf(pb, args...)	__pb_format((pb), true,  args)

static int pb_qfer(struct pbuf *pb, const void *_data, int len, bool more)
{
	const unsigned char *data = _data;
	int i;

	if (pb_room(pb) < 3 + len * 2) {
		WARN_ON(1);
		return -EOVERFLOW;
	}

	pb_start(pb);
	pb_putc(pb, more ? 'm' : 'l');

	for (i = 0; i < len; ++i) {
		unsigned char c = data[i];

		if (c == '$' || c == '#' || c == '}' || c == '*') {
			pb_putc(pb, '}');
			c ^= 0x20;
		}

		pb_putc(pb, c);
	}

	pb_end(pb);

	return 0;
}

// XXX: improve me!
static inline int pb_max_bs_size(struct pbuf *pb)
{
	int size = pb_room(pb) - 4;
	return size > 0 ? size / 2 : 0;
}
static inline void *pb_alloc_bs(struct pbuf *pb, int size)
{
	if (unlikely(pb_room(pb) < 2 * size + 4))
		return NULL;
	return pb->cur + size + 1;
}

static inline void *pb_alloc_tmp(struct pbuf *pb, int size)
{
	if (unlikely(pb_room(pb) < size))
		return NULL;
	return pb->cur + BUFFER_SIZE - size;
}

static inline void pb_flush(struct pbuf *pb, int size)
{
	int keep = pb_size(pb) - size;
	if (keep)
		memmove(pb->buf, pb->buf + size, keep);
	pb->cur -= size;
}

static int pb_copy_to_user(struct pbuf *pb, char __user *ubuf, int size)
{
	int copy = min(size, pb_size(pb));

	if (!copy)
		return -EAGAIN;

	if (o_remote_debug)
		printk(KERN_INFO "<= %.*s\n", min(copy, 64), pb->buf);

	if (copy_to_user(ubuf, pb->buf, copy))
		return -EFAULT;

	pb_flush(pb, copy);
	return copy;
}

// -----------------------------------------------------------------------------
static typeof(access_process_vm) *u_access_process_vm;

static struct task_struct *
ugdb_prepare_examine(struct ugdb *ugdb, struct utrace_examiner *exam);

static int
ugdb_finish_examine(struct ugdb *ugdb, struct utrace_examiner *exam);

static inline int ugdb_readmeam(struct ugdb *ugdb,
				unsigned long addr, int size, void *kbuf)
{
	struct utrace_examiner exam;
	struct task_struct *task;
	int ret = -ESRCH;

	task = ugdb_prepare_examine(ugdb, &exam);
	if (!task)
		return ret;

	ret = u_access_process_vm(task, addr, kbuf, size, 0);

	if (ugdb_finish_examine(ugdb, &exam))
		ret = -ESRCH;

	return ret;
}

#define WP_CHANGED		0

struct wp {
	unsigned long		flags;
	struct list_head	wp_node;

	unsigned long		addr;
	int			size;
	unsigned long		data[0];
};

static void p_wp_free(struct p_wp *p_wp)
{
	struct wp *wp, *n;

	list_for_each_entry_safe(wp, n, &p_wp->wp_list, wp_node) {
		p_wp->wp_cnt -= 1;
		p_wp->wp_mem -= wp->size;
		kfree(wp);
	}

	WARN_ON(p_wp->wp_cnt || p_wp->wp_mem);
}

static inline struct wp *wp_alloc(struct ugdb *ugdb, unsigned long addr, int size)
{
	struct wp *wp;

	wp = kmalloc(sizeof(*wp) + size, GFP_KERNEL);
	if (!wp)
		return wp;

	wp->flags = 0;
	wp->addr = addr;
	wp->size = size;

	// XXX: and what should we do if it fails?
	ugdb_readmeam(ugdb, addr, size, wp->data);

	return wp;
}

static inline struct wp *wp_find(struct p_wp *p_wp, unsigned long addr, int size)
{
	struct wp *wp;

	list_for_each_entry(wp, &p_wp->wp_list, wp_node)
		if (wp->addr == addr && wp->size == size)
			return wp;

	return NULL;
}

#define WP_MAX_CNT	64
#define WP_MAX_MEM	4096
#define WP_MAX_LEN	1024

// -----------------------------------------------------------------------------
#include <asm/debugreg.h>

#define X86_BREAKPOINT_LEN_1		0x40
#define X86_BREAKPOINT_LEN_2		0x44
#define X86_BREAKPOINT_LEN_4		0x4c
#define X86_BREAKPOINT_LEN_8		0x48

#define X86_BREAKPOINT_WRITE	0x81

#define HBP_NUM 4

static inline unsigned long
__encode_dr7(int drnum, unsigned int len, unsigned int type)
{
	unsigned long bp_info;

	bp_info = (len | type) & 0xf;
	bp_info <<= (DR_CONTROL_SHIFT + drnum * DR_CONTROL_SIZE);
	bp_info |= (DR_GLOBAL_ENABLE << (drnum * DR_ENABLE_SIZE));

	return bp_info;
}

static inline bool x86_hw_wp_active(struct x86_hw_wp *hw_wp)
{
	return hw_wp->nr;
}

static int x86_build_hw_wp(struct p_wp *p_wp, struct x86_hw_wp *hw_wp)
{
	struct wp *wp;
	unsigned long dr7 = 0;
	unsigned int nr = 0;

	hw_wp->nr = 0;
	hw_wp->dr7 = 0;

	list_for_each_entry(wp, &p_wp->wp_list, wp_node) {
		u8 hw_len;

		if (nr >= HBP_NUM)
			return -EINVAL;

		switch (wp->size) {
			default:
				return -EINVAL;

			case 1:
				hw_len = X86_BREAKPOINT_LEN_1;
				break;

			case 2:
				hw_len = X86_BREAKPOINT_LEN_2;
				break;

			case 4:
				hw_len = X86_BREAKPOINT_LEN_4;
				break;

			case 8:
				hw_len = X86_BREAKPOINT_LEN_8;
				break;
		}

		if (wp->addr & (wp->size - 1))
			return -EINVAL;

		// XXX: TIF_IA32? IA32_PAGE_OFFSET?
		if (wp->addr >= TASK_SIZE - 8)
			return -EINVAL;

		hw_wp->dr[nr] = wp->addr;

		dr7 |= __encode_dr7(nr, hw_len, X86_BREAKPOINT_WRITE);

		nr++;
	}

	hw_wp->nr = nr;
	hw_wp->dr7 = dr7;

	return 0;
}

static void x86_update_hw_wp(struct ugdb *ugdb, struct ugdb_process *process)
{
	bool old_active, new_active;
	struct p_wp *p_wp = &process->p_wp;
	struct x86_hw_wp hw_wp;

	x86_build_hw_wp(p_wp, &hw_wp);

	old_active = x86_hw_wp_active(&p_wp->hw_wp);
	new_active = x86_hw_wp_active(&hw_wp);

	if (!old_active && !new_active)
		return;

	mutex_lock(&ugdb->u_mutex);
	p_wp->hw_wp = hw_wp;

	if (old_active) {
		struct ugdb_thread *thread;

		list_for_each_entry(thread, &process->p_threads, t_threads) {
			if (thread->t_wp.hw_wp_state == HW_WP_ACTIVE)
				thread->t_wp.hw_wp_state = HW_WP_INVALID;
		}
	}
	mutex_unlock(&ugdb->u_mutex);
}

#include <linux/ptrace.h>
static typeof(arch_ptrace) *u_arch_ptrace;

static int x86_set_dr(struct task_struct *task, int drnum, unsigned long val)
{
	int ret = u_arch_ptrace(task, PTRACE_POKEUSR,
				offsetof(struct user, u_debugreg[drnum]),
				val);

	if (ret)
		printk(KERN_INFO "ugdb: set_dr(%d, %d, %lx) failed: %d\n",
					task->pid, drnum, val, ret);

	return ret;
}

static void x86_apply_hw_bp(struct ugdb_thread *thread)
{
	struct x86_hw_wp *hw_wp = &thread->t_process->p_wp.hw_wp;
	struct task_struct *task = thread_to_task(thread);
	int state = HW_WP_INVALID;
	int nr;

	if (!task)
		goto err;

	for (nr = 0; nr < hw_wp->nr; ++nr) {
		if (x86_set_dr(task, nr, hw_wp->dr[nr]))
			goto err;
	}

	if (x86_set_dr(task, 7, hw_wp->dr7))
		goto err;

	state = x86_hw_wp_active(hw_wp) ? HW_WP_ACTIVE : HW_WP_NONE;
err:
	thread->t_wp.hw_wp_state = state;
}

static inline bool need_sync_hw_wp(struct ugdb_thread *thread)
{
	int state = thread->t_wp.hw_wp_state;
	bool active;

	if (state == HW_WP_INVALID)
		return true;

	active = x86_hw_wp_active(&thread->t_process->p_wp.hw_wp);
	if (active != (state == HW_WP_ACTIVE))
		return true;

	return false;
}

static void thread_sync_hw_wp(struct ugdb_thread *thread)
{
	if (!need_sync_hw_wp(thread))
		return;

	x86_apply_hw_bp(thread);
}

static bool has_watchpoints(struct ugdb_thread *thread)
{
	return unlikely(!list_empty(&thread->t_process->p_wp.wp_list));
}

static inline bool has_soft_watchpoints(struct ugdb_thread *thread)
{
	return has_watchpoints(thread) &&
		thread->t_wp.hw_wp_state != HW_WP_ACTIVE;
}

// -----------------------------------------------------------------------------
static const char *handle_z(struct ugdb *ugdb, char *cmd, int len)
{
	unsigned long addr, size;
	bool insert;
	int type;

	struct ugdb_process *process;
	struct p_wp *p_wp;
	struct wp *wp;

	insert = (*cmd++ == 'Z');
	if (sscanf(cmd, "%d,%lx,%lx", &type, &addr, &size) != 3)
		return "E01";

	if (type != 2)
		return "";

	if (size > WP_MAX_LEN)
		return "E01";

	process = NULL;
	mutex_lock(&ugdb->u_mutex);
	if (ugdb->u_cur_hg)
		process = ugdb->u_cur_hg->t_process;
	mutex_unlock(&ugdb->u_mutex);

	if (!process)
		return "E01";

	p_wp = &process->p_wp;
	wp = wp_find(p_wp, addr, size);

	if (insert) {
		if (wp)
			return "E01";

		if (!size || size > WP_MAX_LEN ||
		    p_wp->wp_cnt + 1 > WP_MAX_CNT ||
		    p_wp->wp_mem + size > WP_MAX_MEM)
			return "E01";

		wp = wp_alloc(ugdb, addr, size);
		if (!wp)
			return "E01";

		down_write(&p_wp->wp_sem);
		list_add_tail(&wp->wp_node, &p_wp->wp_list);
		up_write(&p_wp->wp_sem);

		p_wp->wp_cnt += 1;
		p_wp->wp_mem += size;
	} else {
		if (!wp)
			return "E01";

		down_write(&p_wp->wp_sem);
		list_del(&wp->wp_node);
		up_write(&p_wp->wp_sem);

		if (test_bit(WP_CHANGED, &wp->flags)) {
			struct ugdb_thread *thread;

			mutex_lock(&ugdb->u_mutex);
			list_for_each_entry(thread, &process->p_threads,
								t_threads) {
				if (thread->t_wp.wp_cur == wp)
					thread->t_wp.wp_cur = NULL;
			}
			mutex_unlock(&ugdb->u_mutex);
		}

		p_wp->wp_cnt -= 1;
		p_wp->wp_mem -= size;

		kfree(wp);
	}

	x86_update_hw_wp(ugdb, process);

	return "OK";
}

#define WP_NO_WATCH	-1ul

static unsigned long get_cur_watch(struct ugdb_thread *thread)
{
	struct wp *wp = thread->t_wp.wp_cur;

	if (likely(!wp))
		return WP_NO_WATCH;

	thread->t_wp.wp_cur = NULL;
	clear_bit(WP_CHANGED, &wp->flags);

	return wp->addr;
}

static int memcmp_user(void *kp, void __user *up, int sz)
{
	unsigned char data[64];

	while (sz) {
		int size = sizeof(data);
		if (size > sz)
			size = sz;

		if (copy_from_user(data, up, size))
			;

		if (memcmp(data, kp, size))
			return 1;

		up += size;
		kp += size;
		sz -= size;
	}

	return 0;
}

static bool check_one_wp(struct wp *wp)
{
	void __user *up = (void __user*)wp->addr;

	if (test_bit(WP_CHANGED, &wp->flags))
		return false;

	if (!memcmp_user(wp->data, up, wp->size))
		return false;

	if (test_and_set_bit(WP_CHANGED, &wp->flags))
		return false;

	copy_from_user(wp->data, up, wp->size);

	return true;
}

static bool check_watchpoints(struct ugdb_thread *thread)
{
	struct p_wp *p_wp = &thread->t_process->p_wp;
	struct wp *wp;
	bool ret = false;

	down_read(&p_wp->wp_sem);
	list_for_each_entry(wp, &p_wp->wp_list, wp_node) {
		ret = check_one_wp(wp);
		if (ret) {
			thread->t_wp.wp_cur = wp;
			break;
		}
	}
	up_read(&p_wp->wp_sem);

	return ret;
}

static bool wp_next_soft_trap(struct ugdb_thread *thread, siginfo_t *info)
{
	if (!has_watchpoints(thread))
		return false;

	if (check_watchpoints(thread))
		return false;

	return	info->si_signo == SIGTRAP &&
		thread->t_step == T_STEP_SOFT &&
		// XXX: this filters out do_int3() only.
		// XXX: this is not right, we probably need
		// to check trap_no == 1, but then we need
		// unexported user_single_step_siginfo() for
		// ugdb_report_signal().
		current->thread.trap_no != 3;
}

static void ugdb_wp_clone(struct ugdb_thread *thread)
{
	if (!has_watchpoints(thread))
		return;

	thread_sync_hw_wp(thread);

	if (has_soft_watchpoints(thread)) {
		thread->t_step = T_STEP_SOFT;
		ugdb_set_events(thread, UTRACE_EVENT(SYSCALL_EXIT));
		ugdb_control(thread, UTRACE_SINGLESTEP);
	}
}

// -----------------------------------------------------------------------------
// XXX: include/gdb/signals.h:target_signal
// incomplete: 7, 29, rt?
static int to_gdb_sigmap[] = {
	[SIGHUP]	= 1,
	[SIGINT]	= 2,
	[SIGQUIT]	= 3,
	[SIGILL]	= 4,
	[SIGTRAP]	= 5,
	[SIGABRT]	= 6,
	[SIGIOT]	= 0,	/* ??? */
	[SIGBUS]	= 10,
	[SIGFPE]	= 8,
	[SIGKILL]	= 9,
	[SIGUSR1]	= 30,
	[SIGSEGV]	= 11,
	[SIGUSR2]	= 31,
	[SIGPIPE]	= 13,
	[SIGALRM]	= 14,
	[SIGTERM]	= 15,
	[SIGSTKFLT]	= 0,	/* ??? */
	[SIGCHLD]	= 20,
	[SIGCONT]	= 19,
	[SIGSTOP]	= 17,
	[SIGTSTP]	= 18,
	[SIGTTIN]	= 21,
	[SIGTTOU]	= 22,
	[SIGURG]	= 16,
	[SIGXCPU]	= 24,
	[SIGXFSZ]	= 25,
	[SIGVTALRM]	= 26,
	[SIGPROF]	= 27,
	[SIGWINCH]	= 28,
	[SIGIO]		= 23,
	[SIGPWR]	= 32,
	[SIGSYS]	= 12,
};

static int sig_to_gdb(unsigned sig)
{
	if (sig < ARRAY_SIZE(to_gdb_sigmap) && to_gdb_sigmap[sig])
		return to_gdb_sigmap[sig];
	return sig;

}

static int sig_from_gdb(unsigned sig)
{
	int i;

	// XXX: valid_signal() is wrong, gdb has its own idea
	// about signals. fix to_gdb_sigmap[].
	if (!sig || !valid_signal(sig))
		return 0;

	for (i = 0; i < ARRAY_SIZE(to_gdb_sigmap); i++) {
		if (to_gdb_sigmap[i] == sig)
			return i;
	}

	return sig;
}

static int ugdb_report_stopped(struct ugdb *ugdb, bool async)
{
	struct ugdb_thread *thread;
	int pid, tid, event, data;
	unsigned long watch;
	struct pbuf *pb;
	char ex_r;

	mutex_lock(&ugdb->u_mutex);
	thread = ugdb_next_stopped(ugdb);
	if (!thread)
		goto unlock;

	event = thread->t_stop_event;
	watch = get_cur_watch(thread);

	WARN_ON(thread_alive(thread) != (T_EV_TYPE(event) != T_EV_EXIT));

	pid = thread->t_process->p_pid;
	tid = thread->t_tid;
unlock:
	mutex_unlock(&ugdb->u_mutex);

	if (!thread)
		return false;

	pb = &ugdb->u_pbuf;

	// XXX: damn, cleanup me...
	if (async) {
		__pb_start(pb, '%');
		pb_puts(pb, "Stop:");
	} else {
		pb_start(pb);
	}

	data = T_EV_DATA(event);
	switch (T_EV_TYPE(event)) {
	case T_EV_EXIT:
		if (data & 0xff) {
			data = sig_to_gdb(data & 0xff);
			ex_r = 'X';
		} else {
			data >>= 8;
			ex_r = 'W';
		}

		pb_printf(pb, "%c%x;process:%x", ex_r, data, pid);
		ugdb_destroy_process(thread->t_process);
		break;

	case T_EV_SIGN:
	case T_EV_NONE:
		pb_printf(pb, "T%02xthread:p%x.%x;",
					sig_to_gdb(data), pid, tid);

		if (unlikely(watch != WP_NO_WATCH))
			pb_printf(pb, "watch:%lx;", watch);

		break;

	default:
		printk(KERN_INFO "ugdb: bad stop event %x\n", event);
	}

	pb_end(pb);

	return true;
}

const char *handle_vstopped(struct ugdb *ugdb)
{
	if (ugdb->u_stop_state != U_STOP_SENT)
		return "E01";

	if (ugdb_report_stopped(ugdb, false))
		return NULL;

	return "OK";
}

static const char *handle_thread_info(struct ugdb *ugdb, bool start)
{
	struct ugdb_thread *thread;
	int pid = 0, tid;

	mutex_lock(&ugdb->u_mutex);
	if (start)
		ugdb_reset_tinfo(ugdb);
	else if (!ugdb->u_cur_tinfo)
		printk(KERN_INFO "ugdb: unexpected qsThreadInfo\n");

	thread = ugdb_advance_tinfo(ugdb);
	if (thread) {
		pid = thread->t_process->p_pid;
		tid = thread->t_tid;
	}
	mutex_unlock(&ugdb->u_mutex);

	if (!pid)
		return start ? "E01" : "l";

	pb_packf(&ugdb->u_pbuf, "mp%x.%x", pid, tid);
	return NULL;
}

static char *parse_xid(char *str, int *ppid, bool multi)
{
	if (*str == '-') {
		str++;

		if (multi && *str++ == '1')
			*ppid = -1;
		else
			str = NULL;
	} else {
		char *cur = str;

		*ppid = simple_strtoul(cur, &str, 16);
		if (str == cur)
			str = NULL;
	}

	return str;
}

static char *parse_pid_tid(char *str, int *ppid, int *ptid, bool multi)
{
	if (*str++ != 'p')
		return NULL;

	str = parse_xid(str, ppid, multi);
	if (!str)
		return NULL;

	if (*str++ != '.')
		return NULL;

	str = parse_xid(str, ptid, multi);
	if (!str)
		return NULL;

	return str;
}

static const char *handle_set_cur(struct ugdb *ugdb, char *cmd)
{

	struct ugdb_thread **pthread;
	int pid, tid;

	switch (*cmd++) {
	case 'g':
		pthread = &ugdb->u_cur_hg;
		break;

	case 'c':
		pthread = &ugdb->u_cur_hc;
		break;

	default:
		goto err;
	}

	if (!parse_pid_tid(cmd, &pid, &tid, false))
		goto err;

	mutex_lock(&ugdb->u_mutex);
	*pthread = ugdb_find_thread(ugdb, pid, tid);
	mutex_unlock(&ugdb->u_mutex);

	if (*pthread)
		return "OK";

err:
	return "E01";
}

static const char *handle_ck_alive(struct ugdb *ugdb, char *cmd)
{
	struct ugdb_thread *thread;
	int pid = 0, tid;

	if (!parse_pid_tid(cmd, &pid, &tid, false))
		goto err;

	mutex_lock(&ugdb->u_mutex);
	thread = ugdb_find_thread(ugdb, pid, tid);
	mutex_unlock(&ugdb->u_mutex);

	if (thread)
		return "OK";

err:
	return "E01";
}

static int parse_pid(char *str)
{
	int pid;

	if (!parse_xid(str, &pid, false))
		return 0;

	return pid;
}

static const char *handle_vattach(struct ugdb *ugdb, char *cmd)
{
	int pid = parse_pid(cmd);

	if (pid && !ugdb_attach(ugdb, pid))
		return "OK";

	return "E01";
}

static const char *handle_detach(struct ugdb *ugdb, char *cmd)
{
	int pid;

	if (*cmd++ != ';')
		goto err;

	pid = parse_pid(cmd);
	if (pid && !ugdb_detach(ugdb, pid))
		return "OK";

err:
	return "E01";
}

typedef int (*each_func_t)(struct ugdb_thread *, void *);

static int ugdb_do_each_thread(struct ugdb *ugdb, int pid, int tid,
				each_func_t func, void *arg)
{
	struct ugdb_process *process;
	struct ugdb_thread *thread;
	int ret = -ESRCH;

	list_for_each_entry(process, &ugdb->u_processes, p_processes) {
		if (unlikely(!process_alive(process)))
			continue;
		if (pid > 0 && process->p_pid != pid)
			continue;

		list_for_each_entry(thread, &process->p_threads, t_threads) {
			if (WARN_ON(!thread_alive(thread)))
				continue;
			if (tid > 0 && thread->t_tid != tid)
				continue;

			ret = func(thread, arg);
			if (ret)
				goto out;

			if (tid >= 0)
				break;
		}

		if (pid >= 0)
			break;
	}

out:
	return ret;
}

static int thread_cont_signal(struct ugdb_thread *thread, int signr)
{
	/*
	 * T_STOP_STOPPED was set under ->u_slock so we can't race
	 * with ugdb_add_stopped() and get the wrong t_stop_event.
	 * And, the tracee never changes it after T_STOP_STOPPED.
	 */

	switch (T_EV_TYPE(thread->t_stop_event)) {
	case T_EV_SIGN:
		WARN_ON(!T_EV_DATA(thread->t_stop_event));
		thread->t_stop_event = T_EV_SIGN | signr;
		break;

	default:
		if (!signr)
			break;

		// XXX: temporary hack, will be reported.
		// but perhaps this is what we want ???
		kill_pid(thread->t_spid, signr, 0);
		break;
	}

	return 0;
}

static int ugdb_resume_thread(struct ugdb_thread *thread, int signr, bool step,
				bool all)
{
	int t_step;
	int ret = 0;

	/*
	 * Otherwise I do not know what to do if sig/step, and anyway
	 * I don't think gdb can try to cont a thread which was not
	 * reported as stopped.
	 */
	if (!(thread->t_stop_state & T_STOP_STOPPED))
		return ret;

	ret = thread_cont_signal(thread, signr);
	if (ret < 0)
		return ret;

	thread_sync_hw_wp(thread);

	t_step = 0;
	if (step)
		t_step = T_STEP_HARD;
	else if (has_soft_watchpoints(thread))
		t_step = T_STEP_SOFT;

	return ugdb_cont_thread(thread, all, t_step);
}

static const char *handle_c(struct ugdb *ugdb, char *cmd)
{
	struct ugdb_thread *thread;
	const char *rc = "E01";
	int gdbsig, signr = 0;
	bool step;

	step = (*cmd == 'S' || *cmd == 's');

	switch (*cmd++) {
	case 'C':
	case 'S':
		gdbsig = simple_strtoul(cmd, &cmd, 16);
		if (!gdbsig)
			return rc;

		signr = sig_from_gdb(gdbsig);
		if (!signr)
			printk(KERN_INFO "ugdb: sorry, can't map signal %d\n",
					gdbsig);

		if (*cmd == ';')
			++cmd;
		/* fall */

	case 'c':
	case 's':
		if (!*cmd)
			break;

		printk(KERN_INFO "ugdb: $c ADDR not implemented\n");
		return rc;

		break;
	}

	mutex_lock(&ugdb->u_mutex);
	thread = ugdb->u_cur_hc;
	if (!thread)
		goto unlock;

	if (ugdb_resume_thread(thread, signr, step, false) <= 0)
		goto unlock;

	/* Suprise: non-stop should not reply! */
	rc = NULL;
unlock:
	mutex_unlock(&ugdb->u_mutex);

	return rc;
}

struct vcont_arg {
	int	pid, tid;
	bool	intr;
	int	signr;
	bool	step;
};

static char* parse_vcont_arg(char *cmd, struct vcont_arg *vcont)
{
	vcont->intr = false;
	vcont->signr = 0;

	switch (*cmd++) {
	case 't':
		vcont->intr = true;
		break;

	case 'S':
		vcont->signr = 1;
	case 's':
		vcont->step = true;
		break;

	case 'C':
		vcont->signr = 1;
	case 'c':
		vcont->step = false;
		break;

	default:
		goto err;
	}

	if (vcont->signr) {
		int gdbsig = simple_strtoul(cmd, &cmd, 16);
		if (!gdbsig)
			goto err;

		vcont->signr = sig_from_gdb(gdbsig);
		if (!vcont->signr)
			printk(KERN_INFO "ugdb: sorry, can't map signal %d\n",
				 	gdbsig);
	}

	vcont->pid = -1;
	vcont->tid = -1;
	if (*cmd == ':') {
		cmd = parse_pid_tid(cmd + 1, &vcont->pid, &vcont->tid, true);
		if (!cmd)
			goto err;
	}

	return cmd;
err:
	return NULL;
}

static int do_vcont_thread(struct ugdb_thread *thread, void *arg)
{
	struct vcont_arg *vcont = arg;
	unsigned long genctr;
	bool all;
	int err;

	genctr = thread->t_ugdb->u_genctr;
	if (genctr == thread->t_genctr)
		return 0;

	WARN_ON_ONCE(u_after(thread->t_genctr, genctr));

	thread->t_genctr = genctr;
	all = (vcont->tid < 0);

	if (vcont->intr)
		err = ugdb_stop_thread(thread, all);
	else
		err = ugdb_resume_thread(thread, vcont->signr, vcont->step,
					all);

	if (err < 0)
		return err;
	return 0;
}

static const char *handle_vcont(struct ugdb *ugdb, char *cmd)
{
	const char *rc = "E01";

	switch (*cmd) {
	case ';':
		break;
	case '?':
		return "vCont;t;c;C;s;S";
	default:
		return "E01";
	}

	mutex_lock(&ugdb->u_mutex);
	ugdb->u_genctr++;

	while (*cmd) {
		struct vcont_arg vcont_arg;
		int err;

		if (*cmd++ != ';')
			goto unlock;

		cmd = parse_vcont_arg(cmd, &vcont_arg);
		if (!cmd)
			goto unlock;

		err = ugdb_do_each_thread(ugdb,
				vcont_arg.pid, vcont_arg.tid,
				do_vcont_thread, &vcont_arg);
		if (err)
			goto unlock;
	}

	rc = "OK";
unlock:
	mutex_unlock(&ugdb->u_mutex);

	return rc;
}

static const char *handle_qpass_signals(struct ugdb *ugdb, char *cmd)
{
	sigset_t *set = &ugdb->u_sig_ign;

	sigemptyset(set);
	while (*cmd) {
		char *end;
		int sig = simple_strtoul(cmd, &end, 16);

		if (cmd == end || *end != ';')
			return "E01";
		cmd = end + 1;

		sig = sig_from_gdb(sig);
		if (!sig)
			// XXX: to_gdb_sigmap[] incomplete...
			// return "E01";
			continue;

		sigaddset(set, sig);
	}

	return "OK";
}

// -----------------------------------------------------------------------------
static struct task_struct *
ugdb_prepare_examine(struct ugdb *ugdb, struct utrace_examiner *exam)
{
	struct ugdb_thread *thread;
	struct task_struct *task;
	int err;

	mutex_lock(&ugdb->u_mutex);
	thread = ugdb->u_cur_hg;
	if (!thread || !(thread->t_stop_state & T_STOP_STOPPED))
		goto err;

	// XXX: u_cur_hg can't exit, we hold the mutex
	task = thread_to_task(thread);
	if (!task)
		goto err;

	for (;;) {
		if (fatal_signal_pending(current))
			goto err;

		err = utrace_prepare_examine(task, thread->t_engine, exam);
		if (!err)
			break;

		if (err == -ESRCH)
			goto err;

		schedule_timeout_interruptible(1);
	}

	return task;
err:
	mutex_unlock(&ugdb->u_mutex);
	return NULL;
}

// XXX: we hold the mutex in between, but only because we can't
// use get_task_struct/put_task_struct.

static int
ugdb_finish_examine(struct ugdb *ugdb, struct utrace_examiner *exam)
{
	// XXX: u_cur_hg can't exit, we hold the mutex
	struct ugdb_thread *thread = ugdb->u_cur_hg;
	struct task_struct *task = thread_to_task(thread);
	int ret = -ESRCH;

	if (task)
		ret = utrace_finish_examine(task, thread->t_engine, exam);

	mutex_unlock(&ugdb->u_mutex);
	return ret;
}

#define REGSET_GENERAL	0
#define REGSET_FP	1

#define MAX_REG_SIZE	16

struct gdbreg {
	unsigned short
			gdb_size, gdb_offs,
			rs_setno, usr_offs;
};

//  gdb/gdbserver/i387-fp.c:i387_fxsave
struct gdb_i387_fxsave {
  unsigned short fctrl;
  unsigned short fstat;
  unsigned short ftag;
  unsigned short fop;
  unsigned int fioff;
  unsigned short fiseg;
  unsigned short pad1;
  unsigned int fooff;
  unsigned short foseg;
  unsigned short pad12;

  unsigned int mxcsr;
  unsigned int pad3;

  unsigned char st_space[128];
  unsigned char xmm_space[256];
};

#define FPU__(mem)						\
	.rs_setno = REGSET_FP,					\
	.usr_offs = offsetof(struct gdb_i387_fxsave, mem)

#define GEN__(mem)						\
	.rs_setno = REGSET_GENERAL,				\
	.usr_offs = offsetof(struct user_regs_struct, mem)

/* generated from gdb/regformats/reg-x86-64-linux.dat */
struct gdbreg gdb_regmap_64[] = {
	[ 0] = { .gdb_size =  8, .gdb_offs =   0, GEN__(ax) },
	[ 1] = { .gdb_size =  8, .gdb_offs =   8, GEN__(bx) },
	[ 2] = { .gdb_size =  8, .gdb_offs =  16, GEN__(cx) },
	[ 3] = { .gdb_size =  8, .gdb_offs =  24, GEN__(dx) },
	[ 4] = { .gdb_size =  8, .gdb_offs =  32, GEN__(si) },
	[ 5] = { .gdb_size =  8, .gdb_offs =  40, GEN__(di) },
	[ 6] = { .gdb_size =  8, .gdb_offs =  48, GEN__(bp) },
	[ 7] = { .gdb_size =  8, .gdb_offs =  56, GEN__(sp) },
	[ 8] = { .gdb_size =  8, .gdb_offs =  64, GEN__(r8) },
	[ 9] = { .gdb_size =  8, .gdb_offs =  72, GEN__(r9) },
	[10] = { .gdb_size =  8, .gdb_offs =  80, GEN__(r10) },
	[11] = { .gdb_size =  8, .gdb_offs =  88, GEN__(r11) },
	[12] = { .gdb_size =  8, .gdb_offs =  96, GEN__(r12) },
	[13] = { .gdb_size =  8, .gdb_offs = 104, GEN__(r13) },
	[14] = { .gdb_size =  8, .gdb_offs = 112, GEN__(r14) },
	[15] = { .gdb_size =  8, .gdb_offs = 120, GEN__(r15) },
	[16] = { .gdb_size =  8, .gdb_offs = 128, GEN__(ip) },
	[17] = { .gdb_size =  4, .gdb_offs = 136, GEN__(flags) },
	[18] = { .gdb_size =  4, .gdb_offs = 140, GEN__(cs) },
	[19] = { .gdb_size =  4, .gdb_offs = 144, GEN__(ss) },
	[20] = { .gdb_size =  4, .gdb_offs = 148, GEN__(ds) },
	[21] = { .gdb_size =  4, .gdb_offs = 152, GEN__(es) },
	[22] = { .gdb_size =  4, .gdb_offs = 156, GEN__(fs) },
	[23] = { .gdb_size =  4, .gdb_offs = 160, GEN__(gs) },
	[24] = { .gdb_size = 10, .gdb_offs = 164, FPU__(st_space[0]) },
	[25] = { .gdb_size = 10, .gdb_offs = 174, FPU__(st_space[16]) },
	[26] = { .gdb_size = 10, .gdb_offs = 184, FPU__(st_space[32]) },
	[27] = { .gdb_size = 10, .gdb_offs = 194, FPU__(st_space[48]) },
	[28] = { .gdb_size = 10, .gdb_offs = 204, FPU__(st_space[64]) },
	[29] = { .gdb_size = 10, .gdb_offs = 214, FPU__(st_space[80]) },
	[30] = { .gdb_size = 10, .gdb_offs = 224, FPU__(st_space[96]) },
	[31] = { .gdb_size = 10, .gdb_offs = 234, FPU__(st_space[112]) },
	[32] = { .gdb_size =  4, .gdb_offs = 244, FPU__(fctrl) },
	[33] = { .gdb_size =  4, .gdb_offs = 248, FPU__(fstat) },
	[34] = { .gdb_size =  4, .gdb_offs = 252, FPU__(ftag) },
	[35] = { .gdb_size =  4, .gdb_offs = 256, FPU__(fiseg) },
	[36] = { .gdb_size =  4, .gdb_offs = 260, FPU__(fioff) },
	[37] = { .gdb_size =  4, .gdb_offs = 264, FPU__(foseg) },
	[38] = { .gdb_size =  4, .gdb_offs = 268, FPU__(fooff) },
	[39] = { .gdb_size =  4, .gdb_offs = 272, FPU__(fop) },
	[40] = { .gdb_size = 16, .gdb_offs = 276, FPU__(xmm_space[0]) },
	[41] = { .gdb_size = 16, .gdb_offs = 292, FPU__(xmm_space[16]) },
	[42] = { .gdb_size = 16, .gdb_offs = 308, FPU__(xmm_space[32]) },
	[43] = { .gdb_size = 16, .gdb_offs = 324, FPU__(xmm_space[48]) },
	[44] = { .gdb_size = 16, .gdb_offs = 340, FPU__(xmm_space[64]) },
	[45] = { .gdb_size = 16, .gdb_offs = 356, FPU__(xmm_space[80]) },
	[46] = { .gdb_size = 16, .gdb_offs = 372, FPU__(xmm_space[96]) },
	[47] = { .gdb_size = 16, .gdb_offs = 388, FPU__(xmm_space[112]) },
	[48] = { .gdb_size = 16, .gdb_offs = 404, FPU__(xmm_space[128]) },
	[49] = { .gdb_size = 16, .gdb_offs = 420, FPU__(xmm_space[144]) },
	[50] = { .gdb_size = 16, .gdb_offs = 436, FPU__(xmm_space[160]) },
	[51] = { .gdb_size = 16, .gdb_offs = 452, FPU__(xmm_space[176]) },
	[52] = { .gdb_size = 16, .gdb_offs = 468, FPU__(xmm_space[192]) },
	[53] = { .gdb_size = 16, .gdb_offs = 484, FPU__(xmm_space[208]) },
	[54] = { .gdb_size = 16, .gdb_offs = 500, FPU__(xmm_space[224]) },
	[55] = { .gdb_size = 16, .gdb_offs = 516, FPU__(xmm_space[240]) },
	[56] = { .gdb_size =  4, .gdb_offs = 532, FPU__(mxcsr) },
	[57] = { .gdb_size =  8, .gdb_offs = 536, GEN__(orig_ax) },
};

#undef FPU__
#undef GEN__

static inline int rw_one_reg(struct task_struct *task, int regnum,
				unsigned char regval[], bool write)
{
	const struct user_regset_view *view;
	const struct user_regset *rset;
	struct gdbreg *gdbreg;
	int err, count;

	view = task_user_regset_view(task);
	switch (view->e_machine) {
	case EM_X86_64:
		if (regnum >= ARRAY_SIZE(gdb_regmap_64))
			return -EINVAL;
		gdbreg = gdb_regmap_64;
		count = sizeof(long);
		break;

	default:
		return -EIO;
	}

	gdbreg += regnum;
	rset = view->regsets + gdbreg->rs_setno;

	if (gdbreg->rs_setno != REGSET_GENERAL)
		count = gdbreg->gdb_size;

	if (WARN_ON(count > MAX_REG_SIZE))
		return -EOVERFLOW;

	if (write)
		err = rset->set(task, rset, gdbreg->usr_offs,
				count, regval, NULL);
	else
		err = rset->get(task, rset, gdbreg->usr_offs,
				count, regval, NULL);

	return err ?: gdbreg->gdb_size;
}

static int ugdb_rw_one_reg(struct ugdb *ugdb, int regnum,
				unsigned char regval[], bool write)
{
	struct utrace_examiner exam;
	struct task_struct *task;
	int ret = -ESRCH;

	task = ugdb_prepare_examine(ugdb, &exam);
	if (!task)
		goto ret;

	ret = rw_one_reg(task, regnum, regval, write);

	if (ugdb_finish_examine(ugdb, &exam))
		ret = -ESRCH;
ret:
	return ret;
}

// XXX: hex_to_bin() after 90378889 commit
#include <linux/ctype.h>
static int cap_hex_to_bin(char ch)
{
	if ((ch >= '0') && (ch <= '9'))
		return ch - '0';
	ch = tolower(ch);
	if ((ch >= 'a') && (ch <= 'f'))
		return ch - 'a' + 10;
	return -1;
}

static int unhex(char *cmd, int size)
{
	char *bytes = cmd;

	while (size--) {
		int lo, hi;

		hi = cap_hex_to_bin(*cmd++);
		lo = cap_hex_to_bin(*cmd++);
		if (lo < 0 || hi < 0)
			return -EINVAL;

		*bytes++ = (hi << 4) | lo;
	}

	return 0;
}

static const char *handle_set_reg(struct ugdb *ugdb, char *cmd, int len)
{
	unsigned int reg;
	int skip;

	if (sscanf(cmd, "P%x=%n", &reg, &skip) != 1)
		goto err;

	cmd += skip;
	len -= skip;

	if (len & 1)
		goto err;

	len /= 2;
	if (unhex(cmd, len))
		goto err;

	if (ugdb_rw_one_reg(ugdb, reg, cmd, true) != len)
		goto err;

	return "OK";
err:
	return "E01";
}

static const char *handle_get_reg(struct ugdb *ugdb, char *cmd, int len)
{
	unsigned char regval[MAX_REG_SIZE];
	unsigned int reg;
	int skip, size;

	if (sscanf(cmd, "p%x%n", &reg, &skip) != 1)
		goto err;
	if (len != skip)
		goto err;

	size = ugdb_rw_one_reg(ugdb, reg, regval, false);
	if (size < 0)
		goto err;

	pb_start(&ugdb->u_pbuf);
	pb_putbs(&ugdb->u_pbuf, regval, size);
	pb_end(&ugdb->u_pbuf);

	return NULL;
err:
	return "E01";
}

static int rw_one_regset(struct task_struct *task, int rsn,
				const struct user_regset_view *view,
				void *reg_mem, int reg_size,
				struct gdbreg *reg_map, int reg_cnt,
				void *gdb_mem, bool write)
{
	const struct user_regset *rset = view->regsets + rsn;
	int err;

	if (write) {
		for (; reg_cnt--; ++reg_map) {
			if (reg_map->rs_setno != rsn)
				continue;

			memcpy(reg_mem + reg_map->usr_offs,
			       gdb_mem + reg_map->gdb_offs,
			       reg_map->gdb_size);
		}

		err = rset->set(task, rset, 0, reg_size, reg_mem, NULL);
	} else {
		err = rset->get(task, rset, 0, reg_size, reg_mem, NULL);
		if (err)
			goto ret;

		for (; reg_cnt--; ++reg_map) {
			if (reg_map->rs_setno != rsn)
				continue;

			memcpy(gdb_mem + reg_map->gdb_offs,
			       reg_mem + reg_map->usr_offs,
			       reg_map->gdb_size);
		}
	}
ret:
	return err;
}

#define GDB_REGS_SIZE(regmap)				\
	(regmap[ARRAY_SIZE(regmap)-1].gdb_size +	\
	 regmap[ARRAY_SIZE(regmap)-1].gdb_offs)

struct regs_buf {
	unsigned char gdb_mem[1024];
	union {
		struct user_regs_struct	user_regs_struct;
		struct user_i387_struct	user_i387_struct;
	};
};

static int ugdb_rw_all_regs(struct task_struct *task,
				struct regs_buf *regs_buf,
				bool write)
{
	const struct user_regset_view *view;
	int ret;

#define RW(rsn, user, rmap)						\
	rw_one_regset(task, rsn, view,					\
			&regs_buf->user, sizeof(regs_buf->user),	\
			rmap, ARRAY_SIZE(rmap), regs_buf->gdb_mem,	\
			write)

	view = task_user_regset_view(task);
	switch (view->e_machine) {
	case EM_X86_64:
// XXX: even this needs fixup. There is no ->fs_base in gdb's set
// of regs, it is wrongly initialized as 0 and putreg()->do_arch_prctl()
// changes fs. Later, gdb seems to never use G if P works.
		ret = RW(REGSET_GENERAL, user_regs_struct, gdb_regmap_64);
		if (ret)
			break;

// XXX: needs fixup, see i387_fxsave_to_cache/i387_cache_to_fxsave.
// At least xfpregs_get() is safe even if result is not correct.
if (!write)
		ret = RW(REGSET_FP, user_i387_struct, gdb_regmap_64);
		if (ret)
			break;

		ret = GDB_REGS_SIZE(gdb_regmap_64);
		break;

	default:
		ret = -EIO;
	}

#undef RW

	return ret;
}

static const char *handle_get_all_regs(struct ugdb *ugdb)
{
	struct regs_buf *regs_buf;
	struct utrace_examiner exam;
	struct task_struct *task;
	const char *ret = "E01";
	int size;

	regs_buf = kzalloc(sizeof(*regs_buf), GFP_KERNEL);
	if (!regs_buf)
		goto out;

	task = ugdb_prepare_examine(ugdb, &exam);
	if (!task)
		goto err;

	size = ugdb_rw_all_regs(task, regs_buf, false);

	if (ugdb_finish_examine(ugdb, &exam))
		goto err;

	if (size < 0)
		goto err;

	if (size > sizeof(regs_buf->gdb_mem)) {
		WARN_ON(1);
		goto err;
	}

	if (pb_room(&ugdb->u_pbuf) < 3 + size * 2) {
		WARN_ON(1);
		goto err;
	}

	pb_start(&ugdb->u_pbuf);
	pb_putbs(&ugdb->u_pbuf, regs_buf->gdb_mem, size);
	pb_end(&ugdb->u_pbuf);

	ret = NULL;
err:
	kfree(regs_buf);
out:
	return ret;
}

static const char *handle_set_all_regs(struct ugdb *ugdb, char *cmd, int len)
{
	struct regs_buf *regs_buf;
	struct utrace_examiner exam;
	struct task_struct *task;
	const char *ret = "E01";
	int size;

	printk(KERN_INFO "XXX: $G command, why?\n");

	cmd += 1;
	len -= 1;
	if (len & 1)
		goto out;

	len /= 2;
	if (unhex(cmd, len))
		goto out;

	regs_buf = kzalloc(sizeof(*regs_buf), GFP_KERNEL);
	if (!regs_buf)
		goto out;

	memcpy(regs_buf->gdb_mem, cmd, len);

	task = ugdb_prepare_examine(ugdb, &exam);
	if (!task)
		goto err;

	size = ugdb_rw_all_regs(task, regs_buf, true);

	if (ugdb_finish_examine(ugdb, &exam))
		goto err;

	if (size < 0)
		goto err;

	WARN_ON(size != len);
	ret = "OK";
err:
	kfree(regs_buf);
out:
	return ret;
}

static typeof(access_process_vm) *u_access_process_vm;

static const char *handle_readmem(struct ugdb *ugdb, char *cmd)
{
	struct utrace_examiner exam;
	struct task_struct *task;
	unsigned long addr, size;
	unsigned char *mbuf;
	int copied;

	if (sscanf(cmd, "m%lx,%lx", &addr, &size) != 2)
		goto err;

	size = min_t(unsigned long, size, pb_max_bs_size(&ugdb->u_pbuf));
	if (!size)
		goto err;

	mbuf = pb_alloc_bs(&ugdb->u_pbuf, size);
	if (WARN_ON(!mbuf))
		goto err;

	task = ugdb_prepare_examine(ugdb, &exam);
	if (!task)
		goto err;

	copied = u_access_process_vm(task, addr, mbuf, size, 0);

	if (ugdb_finish_examine(ugdb, &exam))
		goto err;

	if (copied > 0 ) {
		pb_start(&ugdb->u_pbuf);
		pb_putbs(&ugdb->u_pbuf, mbuf, copied);
		pb_end(&ugdb->u_pbuf);

		return NULL;
	}
err:
	return "E01";
}

static const char *handle_writemem(struct ugdb *ugdb, char *cmd, int len)
{
	unsigned long addr, size;
	unsigned int skip, written;
	struct utrace_examiner exam;
	struct task_struct *task;

	if (sscanf(cmd, "M%lx,%lx:%n", &addr, &size, &skip) != 2)
		goto err;

	cmd += skip;
	len -= skip;
	if (len != 2*size || !size)
		goto err;

	if (unhex(cmd, size))
		goto err;

	task = ugdb_prepare_examine(ugdb, &exam);
	if (!task)
		goto err;

	written = u_access_process_vm(task, addr, cmd, size, 1);

	if (ugdb_finish_examine(ugdb, &exam))
		goto err;

	if (written == size)
		return "OK";
err:
	return "E01";
}

static int ugdb_siginfo_rw(struct ugdb *ugdb, siginfo_t *info, bool write)
{
	struct task_struct *task;
	struct utrace_examiner exam;
	struct sighand_struct *sighand;
	siginfo_t *t_siginfo;
	int ret = -EINVAL;

	/*
	 * ugdb_prepare_examine() is overkill, but otherwise we can't
	 * assume task_is_traced(), and this is what ensures we can
	 * safely read/write ->t_siginfo which points to task's stack.
	 */
	task = ugdb_prepare_examine(ugdb, &exam);
	if (!task)
		goto out;

	/* OK, task_struct can't go away, but ->sighand can. */
	rcu_read_lock();
	sighand = rcu_dereference(task->sighand);
	if (!sighand)
		goto unlock_rcu;

	spin_lock_irq(&sighand->siglock);
	if (!task_is_traced(task))
		goto unlock_siglock;

	t_siginfo = ugdb->u_cur_hg->t_siginfo;
	if (!t_siginfo)
		goto unlock_siglock;

	if (write)
		*t_siginfo = *info;
	else
		*info = *t_siginfo;

	ret = 0;
unlock_siglock:
	spin_unlock_irq(&sighand->siglock);
unlock_rcu:
	rcu_read_unlock();

	ugdb_finish_examine(ugdb, &exam);
out:
	return ret;
}

static const char *handle_siginfo_read(struct ugdb *ugdb, char *cmd)
{
	unsigned int off, len;
	siginfo_t info;

	if (sscanf(cmd, "%x,%x", &off, &len) != 2)
		goto err;

	if (off >= sizeof(info))
		goto err;

	if (len > sizeof(info) || off + len > sizeof(info))
		len = sizeof(info) - off;

	if (ugdb_siginfo_rw(ugdb, &info, false))
		goto err;

	if (pb_qfer(&ugdb->u_pbuf, &info + off, len,
				(off + len < sizeof(info))))
		goto err;

	// XXX: Oh. we also need x86_siginfo_fixup(). how ugly.

	return NULL;
err:
	return "E01";
}

// -----------------------------------------------------------------------------
#define EQ(cmd, str)					\
	(strncmp((cmd), (str), sizeof(str)-1) ?	false :	\
		((cmd) += sizeof(str)-1, true))

static const char *handle_qfer(struct ugdb *ugdb, char *cmd)
{
	const char *rc = "E01";

	if (EQ(cmd, "siginfo:")) {
		if (EQ(cmd, "read::"))
			rc = handle_siginfo_read(ugdb, cmd);
	}

	return rc;
}

static void handle_command(struct ugdb *ugdb, char *cmd, int len)
{
	struct pbuf *pb = &ugdb->u_pbuf;
	const char *rc = "";

	switch (cmd[0]) {
	case '!':
	case '?':
		rc = "OK";
		break;

	case 'H':
		rc = handle_set_cur(ugdb, cmd + 1);
		break;

	case 'T':
		rc = handle_ck_alive(ugdb, cmd + 1);
		break;

	case 'D':
		rc = handle_detach(ugdb, cmd + 1);
		break;

	case 'g':
		rc = handle_get_all_regs(ugdb);
		break;

	case 'G':
		rc = handle_set_all_regs(ugdb, cmd, len);
		break;

	case 'p':
		rc = handle_get_reg(ugdb, cmd, len);
		break;

	case 'P':
		rc = handle_set_reg(ugdb, cmd, len);
		break;

	case 'm':
		rc = handle_readmem(ugdb, cmd);
		break;

	case 'M':
		rc = handle_writemem(ugdb, cmd, len);
		break;

	case 'C':
	case 'c':
	case 'S':
	case 's':
		rc = handle_c(ugdb, cmd);
		break;

	case 'z':
	case 'Z':
		rc = handle_z(ugdb, cmd, len);
		break;

	case 'q':
		if (EQ(cmd, "qSupported")) {
			if (!strstr(cmd, "multiprocess+")) {
				printk(KERN_INFO "ugdb: can't work without multiprocess\n");
				ugdb->u_err = -EPROTONOSUPPORT;
			}

			pb_packf(&ugdb->u_pbuf, "PacketSize=%x;%s",
				PACKET_SIZE,
				"QStartNoAckMode+;QNonStop+;multiprocess+;"
				"QPassSignals+;qXfer:siginfo:read+");
			rc = NULL;
		}
		else if (EQ(cmd, "qfThreadInfo")) {
			rc = handle_thread_info(ugdb, true);
		}
		else if (EQ(cmd, "qsThreadInfo")) {
			rc = handle_thread_info(ugdb, false);
		}
		else if (EQ(cmd, "qXfer:")) {
			rc = handle_qfer(ugdb, cmd);
		}
		else if (EQ(cmd, "qTStatus")) {
			rc = "T0";
		}

		break;

	case 'Q':
		if (EQ(cmd, "QStartNoAckMode")) {
			ugdb->u_no_ack = true;
			rc = "OK";
		}
		else if (EQ(cmd, "QNonStop:")) {
			if (*cmd != '1') {
				printk(KERN_INFO "ugdb: all-stop is not implemented.\n");
				ugdb->u_err = -EPROTONOSUPPORT;
			}

			rc = "OK";
		}
		else if (EQ(cmd, "QPassSignals:")) {
			rc = handle_qpass_signals(ugdb, cmd);
		}

		break;

	case 'v':
		if (EQ(cmd, "vAttach;")) {
			rc = handle_vattach(ugdb, cmd);
		}
		else if (EQ(cmd, "vStopped")) {
			rc = handle_vstopped(ugdb);
		}
		else if (EQ(cmd, "vCont")) {
			rc = handle_vcont(ugdb, cmd);
		}

		break;

	default:
		;
	}

	if (rc)
		pb_packs(pb, rc);
}

static void process_commands(struct ugdb *ugdb)
{
	char *cmds = ugdb->u_cbuf;
	int todo = ugdb->u_clen;

	if (o_remote_debug)
		printk(KERN_INFO "=> %.*s\n", ugdb->u_clen, ugdb->u_cbuf);

	while (todo) {
		char first;
		char *c_cmd, *c_end;
		int c_len;

		first = *cmds++;
		todo--;

		switch (first) {
		default:
			printk(KERN_INFO "XXX: unknown chr %02x\n", first);
			pb_putc(&ugdb->u_pbuf, '-');
			break;

		case '-':
			printk(KERN_INFO "XXX: got NACK!\n");
			ugdb->u_err = -EPROTO;
		case '+':
			break;

		case 0x3:
			printk(KERN_INFO "XXX: unexpected CTRL-C\n");
			break;

		case '$':
			c_cmd = cmds;
			c_end = strnchr(c_cmd, todo, '#');
			c_len = c_end ? c_end - cmds : -1;

			if (c_len < 0 || todo < c_len + 3) {
				printk(KERN_INFO "XXX: can't find '#cs'\n");
				++todo;
				--cmds;
				goto out;
			}

			// XXX: verify checksum ?
			todo -= c_len + 3;
			cmds += c_len + 3;
			*c_end = 0;

			if (!ugdb->u_no_ack)
				pb_putc(&ugdb->u_pbuf, '+');

			handle_command(ugdb, c_cmd, c_len);
		}
	}
out:
	ugdb->u_clen = todo;
	if (todo && cmds > ugdb->u_cbuf)
		memmove(ugdb->u_cbuf, cmds, todo);
}

// -----------------------------------------------------------------------------
static int xxx_tinfo(struct ugdb *ugdb)
{
	struct ugdb_thread *thread;
	int tid = 0;

	mutex_lock(&ugdb->u_mutex);
	thread = ugdb_advance_tinfo(ugdb);
	if (thread)
		tid = thread->t_tid;
	mutex_unlock(&ugdb->u_mutex);

	return tid;
}

static int do_stop_thread(struct ugdb_thread *thread, void *arg)
{
	ugdb_stop_thread(thread, arg != NULL);
	return 0;
}

static int do_cont_thread(struct ugdb_thread *thread, void *arg)
{
	ugdb_cont_thread(thread, arg != NULL, false);
	return 0;
}

static int xxx_sc_threads(struct ugdb *ugdb, int tid, bool sc)
{
	void *arg = NULL;
	int pid = 0;
	int ret;

	if (tid < 0) {
		pid = -tid;
		tid = -1;
		arg = (void*)1;
	}

	mutex_lock(&ugdb->u_mutex);
	ret = ugdb_do_each_thread(ugdb, pid, tid,
				sc ? do_stop_thread : do_cont_thread,
				arg);
	mutex_unlock(&ugdb->u_mutex);

	return ret;
}

static int xxx_stop(struct ugdb *ugdb, int tid)
{
	return xxx_sc_threads(ugdb, tid, true);
}

static int xxx_cont(struct ugdb *ugdb, int tid)
{
	return xxx_sc_threads(ugdb, tid, false);
}

static int xxx_get_stopped(struct ugdb *ugdb)
{
	struct ugdb_thread *thread;
	int tid = 1;

	if (ugdb->u_stop_state == U_STOP_IDLE)
		return -1;

	if (ugdb->u_stop_state == U_STOP_PENDING)
		tid = 1000;

	thread = ugdb_next_stopped(ugdb);
	if (!thread)
		return 0;
	return tid * thread->t_tid;
}

static int xxx_show_all(struct ugdb *ugdb)
{
	struct ugdb_process *process;
	struct ugdb_thread *thread;

	printk(KERN_INFO "SHOW start ----------------------------------------\n");

	mutex_lock(&ugdb->u_mutex);
	list_for_each_entry(process, &ugdb->u_processes, p_processes) {
		printk(KERN_INFO "PROC: %x\n", process->p_pid);

		list_for_each_entry(thread, &process->p_threads, t_threads) {
			printk(KERN_INFO "    T: %x %p; %p %p\n",
					thread->t_tid, thread,
					thread->t_spid, pid_task(thread->t_spid, PIDTYPE_PID));
		}

	}
	mutex_unlock(&ugdb->u_mutex);

	printk(KERN_INFO "SHOW end ----------------------------------------\n");
	return 0;
}

static long ugdb_f_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct ugdb *ugdb = file->private_data;
	// XXX: otherwise gdb->get_tty_state(TCGETS, TCSETS, TCFLSH) complains
	int ret = 0;

	// XXX: temporary debugging hooks, ignore.
	switch (cmd) {
		case 0x666 + 0:
			ret = ugdb_attach(ugdb, arg);
			break;

		case 0x666 + 1:
			ret = ugdb_detach(ugdb, arg);
			break;

		case 0x666 + 2:
			ret = xxx_tinfo(ugdb);
			break;

		case 0x666 + 3:
			ret = xxx_stop(ugdb, arg);
			break;

		case 0x666 + 4:
			ret = xxx_cont(ugdb, arg);
			break;

		case 0x666 + 5:
			ret = xxx_get_stopped(ugdb);
			break;

		case 0x666 + 6:
			ret = xxx_show_all(ugdb);
			break;
	}

	return ret;
}

static unsigned int ugdb_f_poll(struct file *file, poll_table *wait)
{
	struct ugdb *ugdb = file->private_data;
	unsigned int mask;

	poll_wait(file, &ugdb->u_wait, wait);

	mask = (POLLOUT | POLLWRNORM);

	if (pb_size(&ugdb->u_pbuf) || ugdb->u_stop_state == U_STOP_PENDING)
		mask |= (POLLIN | POLLRDNORM);

	if (ugdb->u_err)
		mask |= POLLERR;

	return mask;
}

static ssize_t ugdb_f_read(struct file *file, char __user *ubuf,
				size_t count, loff_t *ppos)
{
	struct ugdb *ugdb = file->private_data;
	struct pbuf *pb = &ugdb->u_pbuf;

	if (ugdb->u_err)
		return ugdb->u_err;

	if (ugdb->u_stop_state == U_STOP_PENDING)
		ugdb_report_stopped(ugdb, true);

	if (pb_size(pb) > count) {
		printk(KERN_INFO "XXX: short read %d %ld\n",
					pb_size(pb), count);
	}

	return pb_copy_to_user(pb, ubuf, count);
}

static ssize_t ugdb_f_write(struct file *file, const char __user *ubuf,
				size_t count, loff_t *ppos)
{
	struct ugdb *ugdb = file->private_data;

	if (ugdb->u_err)
		return ugdb->u_err;

	if (count > PACKET_SIZE - ugdb->u_clen) {
		count = PACKET_SIZE - ugdb->u_clen;
		printk("XXX: write(%ld,%d) enospc\n", count, ugdb->u_clen);
		if (1)
			return ugdb->u_err = -ENOSPC;
	}

	if (copy_from_user(ugdb->u_cbuf + ugdb->u_clen, ubuf, count))
		return -EFAULT;

	ugdb->u_clen += count;
	process_commands(ugdb);

	return count;
}

static int ugdb_f_open(struct inode *inode, struct file *file)
{
	nonseekable_open(inode, file);

	file->private_data = ugdb_create();

	return	IS_ERR(file->private_data) ?
		PTR_ERR(file->private_data) : 0;
}

static int ugdb_f_release(struct inode *inode, struct file *file)
{
	ugdb_destroy(file->private_data);

	return 0;
}

static const struct file_operations ugdb_f_ops = {
	.open			= ugdb_f_open,
	.unlocked_ioctl		= ugdb_f_ioctl,
	.poll			= ugdb_f_poll,
	.read			= ugdb_f_read,
	.write			= ugdb_f_write,
	.release		= ugdb_f_release,
};

#include <linux/kallsyms.h>

struct kallsyms_sym {
	const char	*name;
	unsigned long	addr;
};

static int kallsyms_on_each_symbol_cb(void *data, const char *name,
				struct module *mod, unsigned long addr)
{
	struct kallsyms_sym *sym = data;

	if (strcmp(name, sym->name))
		return 0;

	sym->addr = addr;
	return 1;
}

// XXX: kallsyms_lookup_name() is not exported in 2.6.32
static bool lookup_unexported(void)
{
	struct kallsyms_sym sym;

	sym.name = "access_process_vm";
	if (!kallsyms_on_each_symbol(kallsyms_on_each_symbol_cb, &sym))
		goto err;
	u_access_process_vm = (void*)sym.addr;

	sym.name = "arch_ptrace";
	if (!kallsyms_on_each_symbol(kallsyms_on_each_symbol_cb, &sym))
		goto err;
	u_arch_ptrace = (void*)sym.addr;

	return true;
err:
	printk(KERN_ERR "ugdb: can't lookup %s\n", sym.name);
	return false;
}

#define PROC_NAME	"ugdb"
struct proc_dir_entry *ugdb_pde;

static int __init ugdb_init(void)
{
	if (!lookup_unexported())
		return -ESRCH;

	ugdb_pde = proc_create(PROC_NAME, S_IFREG|S_IRUGO|S_IWUGO,
				NULL, &ugdb_f_ops);
	if (!ugdb_pde)
		return -EBADF;

	return 0;
}

static void __exit ugdb_exit(void)
{
	remove_proc_entry(PROC_NAME, NULL);
}

MODULE_LICENSE("GPL");
module_init(ugdb_init);
module_exit(ugdb_exit);

^ permalink raw reply	[flat|nested] 4+ messages in thread

* Re: gdbstub initial code, v16
  2010-11-15 19:12 gdbstub initial code, v16 Oleg Nesterov
@ 2010-11-16 20:02 ` Roland McGrath
       [not found] ` <20110215204148.GA17258@host1.dyn.jankratochvil.net>
  1 sibling, 0 replies; 4+ messages in thread
From: Roland McGrath @ 2010-11-16 20:02 UTC (permalink / raw)
  To: Oleg Nesterov; +Cc: archer, utrace-devel

> Well. I can't say this change is good. Because ugdb uses (unexported)
> arch_ptrace() to set debugregs in a very much x86-specific way. However,
> I do not see what else can I do.

That kludge is unworkable in several ways.  It is just not worth pursuing.
Just use hw_breakpoint on kernels that have it, and don't try to support
the feature on kernels that don't.

> Say, should I implement vRun? From the very beginnig, I hate the idea
> to exec the target from kernel space, but otoh I'm afraid this is
> important for gdb users.

We've also vaguely discussed doing some hybrid solution where gdb does
something different for "run".  If you can do a kludge to implement vRun
fairly quickly and it works OK--including that it remains possible for
ugdb to be a module--then go ahead.  If that is too ungainly, or is just
plain infeasible (which I think it might be), then don't bend over
backwards for it.  We may have reached the end of what it's possible to
get done at all sensibly without more active involvement from the GDB team.


Thanks,
Roland

^ permalink raw reply	[flat|nested] 4+ messages in thread

* safe PTRACE_ATTACH
       [not found]             ` <20110222203834.GA6977@redhat.com>
@ 2011-02-23 15:51               ` Jan Kratochvil
  2011-02-23 17:24                 ` Oleg Nesterov
  0 siblings, 1 reply; 4+ messages in thread
From: Jan Kratochvil @ 2011-02-23 15:51 UTC (permalink / raw)
  To: Oleg Nesterov; +Cc: Roland McGrath, archer

Hi Oleg,

notice: Moved thread to the Archer list.

I can confirm this problem exists.

AFAIK on recent kernels this whole "trick" (if-stopped then tkill(SIGSTOP) and
PTRACE_CONT(0)) is not needed as it now works even for `eaten-out SIGSTOP
notifications'.

But to be compatible with the older kernels (despite having this race there)
what do you suggest?  Checking /proc/version seems too fragile to me.
GDB could do another ptrace test (like linux_test_for_tracesysgood etc.).


Thanks,
Jan


On Tue, 22 Feb 2011 21:38:34 +0100, Oleg Nesterov wrote:
[...]
> Btw. Jan, linux_nat_post_attach_wait() doesn't look right. It assumes
> that the first signal reported by tracee should be SIGSTOP. This is
> not true.
> 
> This is what happens if gdb tries to attach to the 'T (stopped)' task,
> but the tracee gets SIGCONT after gdb does kill_lwp(pid, SIGSTOP).
> 
> 	ptrace(PTRACE_ATTACH, 21462, 0, 0)      = 0
> 
> 	open("/proc/21462/status", O_RDONLY)    = 5
> 	read(5, "Name:\tsleep\nState:\tT (stopped)\nTg"..., 1024) = 753
> 
> pid_is_stopped()
> 
> 	tkill(21462, SIGSTOP)                   = 0
> 
> kill_lwp(pid, SIGSTOP) in case we dont have exit code
> 
> --- Suppose that SIGCONT come here ---
> 
> 	ptrace(PTRACE_CONT, 21462, 0, SIG_0)    = 0
> 
> 	wait4(21462, [{WIFSTOPPED(s) && WSTOPSIG(s) == SIGCONT}], 0, NULL) = 21462
> 
> 	ptrace(PTRACE_CONT, 21462, 0x1, SIG_0)  = 0
> 	                               ^^^^^^^
> this makes the tracee running, and
> 
> 	wait4(21462,
> 
> gdb hangs until it reports something else.
> 
> Oleg.

^ permalink raw reply	[flat|nested] 4+ messages in thread

* Re: safe PTRACE_ATTACH
  2011-02-23 15:51               ` safe PTRACE_ATTACH Jan Kratochvil
@ 2011-02-23 17:24                 ` Oleg Nesterov
  0 siblings, 0 replies; 4+ messages in thread
From: Oleg Nesterov @ 2011-02-23 17:24 UTC (permalink / raw)
  To: Jan Kratochvil; +Cc: Roland McGrath, archer

On 02/23, Jan Kratochvil wrote:
>
> notice: Moved thread to the Archer list.
>
> I can confirm this problem exists.
>
> AFAIK on recent kernels this whole "trick" (if-stopped then tkill(SIGSTOP) and
> PTRACE_CONT(0)) is not needed as it now works even for `eaten-out SIGSTOP
> notifications'.

It is still needed, but the reason is quite different. See the test-case
in http://marc.info/?l=linux-kernel&m=129676623323195

The previous reason for this bug was fixed a long ago. IOW, it is still
needed in the unlikely case.

But this is easy to fix (although the simple fix is not clean), and then
this trick is not needed.

> But to be compatible with the older kernels (despite having this race there)
> what do you suggest?  Checking /proc/version seems too fragile to me.
> GDB could do another ptrace test (like linux_test_for_tracesysgood etc.).

Oh, I do not know what would be the best check. But anyway this is
"easy", I mean we can do thi somehow.

The problem is, I do not see how we can modify the kernel and do not
break the unmodified gdb.

Oh. You know, gdb looks completely broken when it comes to jctl signals ;)
Like the kernel. At least in all-stop mode.

This is because... I don't know how to explain, please see the example.

Absolutely trivial test-case:

	void *tf(void *arg)
	{
		for (;;)
			pause();
	}

	int main(void)
	{
		pthread_t pt;

		pthread_create(&pt, NULL, tf, NULL);

		tf(NULL);
		return 0;
	}

Now,
	GNU gdb (GDB) 7.1
	...


	(gdb) attach 29412
	Attaching to program: /tmp/0/mt, process 29412
	Reading symbols from /lib64/libpthread.so.0...(no debugging symbols found)...done.
	[Thread debugging using libthread_db enabled]
	[New Thread 0x41b54950 (LWP 29413)]
	Loaded symbols for /lib64/libpthread.so.0
	Reading symbols from /lib64/libc.so.6...(no debugging symbols found)...done.
	Loaded symbols for /lib64/libc.so.6
	Reading symbols from /lib64/ld-linux-x86-64.so.2...(no debugging symbols found)...done.
	Loaded symbols for /lib64/ld-linux-x86-64.so.2
	0x00000033af60e57d in pause () from /lib64/libpthread.so.0

	(gdb) c
	Continuing.

lets send SIGSTOP to 29067: $ kill -STOP 29067

	Program received signal SIGSTOP, Stopped (signal).
	0x00000033af60e57d in pause () from /lib64/libpthread.so.0
	(gdb)

very nice, but what gdb does?

	--- SIGCHLD (Child exited) @ 0 (0) ---
	wait4(-1, 0x7ffffab89b4c, WNOHANG|__WCLONE, NULL) = 0
	wait4(-1, [{WIFSTOPPED(s) && WSTOPSIG(s) == SIGSTOP}], WNOHANG, NULL) = 29412
	tkill(29412, SIG_0)                     = 0
	tkill(29413, SIGSTOP)                   = 0
	wait4(29413, 0x7ffffab898b4, 0, NULL)   = -1 ECHILD (No child processes)
	wait4(29413, [{WIFSTOPPED(s) && WSTOPSIG(s) == SIGSTOP}], __WCLONE, NULL) = 29413

Note this tkill(SIGSTOP) to sub-thread!

Now,

	(gdb) c
	Continuing.

	Program received signal SIGSTOP, Stopped (signal).
	0x00000033af60e57d in pause () from /lib64/libpthread.so.0
	(gdb) c
	Continuing.

	Program received signal SIGSTOP, Stopped (signal).
	[Switching to Thread 0x41b54950 (LWP 29413)]
	0x00000033af60e57d in pause () from /lib64/libpthread.so.0
	(gdb) c
	Continuing.

	Program received signal SIGSTOP, Stopped (signal).
	[Switching to Thread 0x7f00007be6f0 (LWP 29412)]
	0x00000033af60e57d in pause () from /lib64/libpthread.so.0
	(gdb) c
	Continuing.

	Program received signal SIGSTOP, Stopped (signal).
	[Switching to Thread 0x41b54950 (LWP 29413)]
	0x00000033af60e57d in pause () from /lib64/libpthread.so.0
	(gdb)

and so on forever. every time it does

	ptrace(PTRACE_CONT, 29413, 0x1, SIG_0)  = 0
	ptrace(PTRACE_CONT, 29412, 0x1, SIGSTOP) = 0
	--- SIGCHLD (Child exited) @ 0 (0) ---
	wait4(-1, [{WIFSTOPPED(s) && WSTOPSIG(s) == SIGSTOP}], WNOHANG|__WCLONE, NULL) = 29413
	tkill(29413, SIG_0)                     = 0
	tkill(29412, SIGSTOP)                   = 0
	wait4(29412, [{WIFSTOPPED(s) && WSTOPSIG(s) == SIGSTOP}], 0, NULL) = 29412

with the obvious result.

"signal SIGSTOP" (instead of "c") does work not too by the same reason.

Oleg.

^ permalink raw reply	[flat|nested] 4+ messages in thread

end of thread, other threads:[~2011-02-23 17:24 UTC | newest]

Thread overview: 4+ messages (download: mbox.gz / follow: Atom feed)
-- links below jump to the message on this page --
2010-11-15 19:12 gdbstub initial code, v16 Oleg Nesterov
2010-11-16 20:02 ` Roland McGrath
     [not found] ` <20110215204148.GA17258@host1.dyn.jankratochvil.net>
     [not found]   ` <20110215215438.CBD0E1806E0@magilla.sf.frob.com>
     [not found]     ` <20110216214423.GA22228@redhat.com>
     [not found]       ` <20110216220541.55E701802A2@magilla.sf.frob.com>
     [not found]         ` <20110217211225.GA17768@redhat.com>
     [not found]           ` <20110221193927.122901814AE@magilla.sf.frob.com>
     [not found]             ` <20110222203834.GA6977@redhat.com>
2011-02-23 15:51               ` safe PTRACE_ATTACH Jan Kratochvil
2011-02-23 17:24                 ` Oleg Nesterov

This is a public inbox, see mirroring instructions
for how to clone and mirror all data and code used for this inbox;
as well as URLs for read-only IMAP folder(s) and NNTP newsgroup(s).