
Synthesizing Call Frame Information for hand-written
assembly
Bhagat, Indu

indu.bhagat@oracle.com

September 20, 2023
V1

Abstract

Call Frame Information (or CFI) is the information that accompanies executable ELF object
code and is used to perform virtual stack unwinding or stack walking at any point of the
execution of that code. There are several formats available to encode CFI data in ELF files;
DWARF Frame, EH Frame and SFrame are some of them.

Compilers are able to generate the CFI annotations corresponding to the code they compile,
completely and accurately. However, there are scenarios where assembly language programs
are written and maintained by hand; these programs can, occasionally, be large. In hand-
written assembly language programs, the CFI pseudo-ops are either added by hand or, what
is more usual, completely absent. Annotating assembly language programs with CFI directives
is an error-prone task, and maintaining them as the code evolves is time consuming. Some
applications like the Linux kernel avoid the problem of maintaining CFI annotations by using
their own in-house tools to post-process compiled object codes: the call frame information (for
stack tracing) is reverse-engineered from the binary. These reverse-engineering solutions use
knowledge about the ISA and the ABI to infer the stack frame structure from the instructions.
Although such a solution involving reverse-engineering of binaries works in practice1 for at least
one architecture, it is neither scalable nor easy to maintain.

In this paper, we propose to add support to the GNU assembler so that it can synthesize
CFI information for the programs it assembles, even in the absence of CFI directives in the
assembly sources. We have started to implement this functionality in a prototype and it is
already looking very promising. A very central concept of this proposal and implementation
is that the GNU assembler now ”understands” some of the machine instructions it assembles.
Before, the common assembler code would only see fragments provided by the backends; now,
the backends can optionally provide additional information in the form of generic instructions;
this new infrastructure can be used as a foundation of other interesting features in the assembler,
such as certain optimizations, code property validation and program verification.

1 Introduction to DWARF CFI
The DWARF Call Frame Information, defined in the DWARF debugging standard [1], is typ-
ically used to convey stack unwind information, per PC, for the generated programs. This
information is used by debuggers, profilers, and many other program analysis tools to generate
backtraces and also state recovery.

1does have issues deciphering some control flow

1

0000921c 0000000000000020 00009220 FDE cie=00000000 pc=000000000046451a..0000000000464559
DW_CFA_advance_loc: 5 to 000000000046451f
DW_CFA_def_cfa_offset: 16
DW_CFA_offset: r6 (rbp) at cfa-16
DW_CFA_advance_loc: 3 to 0000000000464522
DW_CFA_def_cfa_register: r6 (rbp)
DW_CFA_advance_loc: 3 to 0000000000464525
DW_CFA_offset: r12 (r12) at cfa-24
DW_CFA_offset: r3 (rbx) at cfa-32
DW_CFA_advance_loc: 51 to 0000000000464558
DW_CFA_def_cfa: r7 (rsp) ofs 8
DW_CFA_nop
DW_CFA_nop

Figure 1: DWARF opcodes in an FDE in a sample .eh frame section

0000921c 0000000000000020 00009220 FDE cie=00000000 pc=000000000046451a..0000000000464559
LOC CFA rbx rbp r12 ra

000000000046451a rsp+8 u u u c-8
000000000046451f rsp+16 u c-16 u c-8
0000000000464522 rbp+16 u c-16 u c-8
0000000000464525 rbp+16 c-32 c-16 c-24 c-8
0000000000464558 rsp+8 c-32 c-16 c-24 c-8

Figure 2: Interpreted DWARF CFI from the FDE in Figure 1

Conceptually, DWARF CFI specifies how to recover the return address and callee-saved
registers at each PC in a given function. When available, the DWARF CFI information can be
found in dedicated sections (e.g. .debug frame or .eh frame) in the object files.

Figure 1 shows an excerpt from an .eh frame section. The excerpt corresponds to the
DWARF CFI information for one function in the binary. A simple objdump -Wf2 on your
favorite binary will show the dump of the DWARF CFI contained in the .eh frame section.

The DW CFA * opcodes, in Figure 1, are the DWARF CFI opcodes which when executed,
help the unwinder or stack tracer recover the required register: CFA (Canonical Frame Address),
ra (Return Address), or any of the callee-saved registers. In aggregate (interpreted) form,
the above bytecodes generate information equivalent to the following (dump generated using
objdump -WF), as shown in Figure 2. For deeper understanding of the DWARF CFI format, the
readers are encouraged to peruse the DWARF debugging standard specification[1].

The GNU assembler defines a set of CFI directives [2], which are used by the compiler to
convey the call frame information. Figure 3 shows a simple example with x86 64 assembly and
its associated GNU AS CFI directives. With respect to support in the GNU toolchain, gcc is
capable of generating accurate CFI annotations3 for all code written in high-level language. The
GNU assembler consumes these CFI annotations to then generate stack unwind information in
the format chosen by the user (EH Frame, Debug Frame etc.).

These CFI pseudo-ops are also used by assembly-code programmers to convey stack unwind
information for their hand-written asm code. Manually adding CFI annotations to assembly pro-
grams needs additional expertise; human-errors are possible and indeed occur more often than
one may like. These errors, if present at the time of virtual stack unwind, lead to unfavorable
outcomes: incorrect stacktraces, program state corruption or even a crash at an inopportune

2On x86 64
3The keyword ’CFI annotations’ is used interchangeably in this paper to imply ’GNU AS CFI directives’

2

.text

.globl foo

.type foo, @function
foo:

.cfi_startproc
pushq %rbp
.cfi_def_cfa_offset 16
.cfi_offset 6, -16
[...]
popq %rbp
.cfi_def_cfa_offset 8
.cfi_restore 6
ret
.cfi_endproc

.LFE0:
.size foo, .-foo

Figure 3: Using GNU AS CFI directives on x86 64

time.
The motivation behind this work is to enhance the capabilities of the GNU Toolchain so

that it can synthesize CFI for hand-written assembly and hence, alleviate the user of the task
of writing CFI annotations by hand. We refer to this capability of Synthesizing CFI as SCFI
in the rest of the document.

2 Synthesis of CFI (SCFI) for assembly
To design a solution for synthesis of CFI for assembly, one of the key question that needs to be
resolved is:

Q1: Is it possible to synthesize CFI for any arbitrary asm out there?

For this particular question, despite not being exactly the same, it is useful to think about
the synthesis of CFI as the synthesis of the corresponding CFI directives, simply for sake of
understanding. In other words, the question is:

Given an assembly program, if the task is to ”complete” it with CFI pseudo-ops whose eval-
uation would result in correct CFI for the corresponding code, can we generate all the necessary
CFI psuedo-ops that the user may have had to manually specify ?

Now, in essence, to automatically synthesize CFI, we have the following two sources of
information available to us:

1. The assembly code
2. Knowledge of the ABI and calling convention

In order to answer this question, first lets note that there indeed exist some .cfi * directives
which cannot be synthesized by the assembler using only the information available in these
sources. This is because the above two sources of information are not sufficient in some cases.

2.1 Non-synthesizable GAS CFI directives
According to our understanding as of today, a complete list of CFI directives that we cannot
synthesize by looking at the hand-written asm are as follows:

1. .cfi signal frame : This directive marks the current function as signal trampoline.

3

2. .cfi sections: This directive is used to specify which section(s) should the CFI infor-
mation be emitted to: .eh frame section, .debug frame section and/or .sframe section,
etc.
The default in the GNU assembler is ’.cfi sections .eh frame’ (if no .cfi sections
is specified). Further, for generating the .sframe section, GAS also supports a command
line option --gsframe. Adding new command line options, like that for .sframe may
provide a way to get user input, but it needs some careful thought: A user may want to
specify a list of sections, like ’.cfi sections .eh frame, .debug frame’. Or, the user
may choose ’.cfi sections .eh frame entry’ which is to generate Compact EH Frame.
Adding command line options does not seem scalable here.

3. .cfi label: This CFI directive allows to identify CFI data explicitly. This allows al-
teration of stack unwind data, if needed, when the original code sequence in the func-
tion needs to be patched for some reason. See the original commit for more infor-
mation [4]. glibc has some uses of .cfi label, e.g., in sysdeps/arc/start.S and sys-
deps/unix/sysv/linux/riscv/clone.S.

4. Others: There are other CFI directives which also fall in the category of non-synthesizable
CFI directives. These include .cfi personality, .cfi personality id, .cfi lsda and
.cfi inline lsda. Although many of these directives are used for Compact EH Frame
format, more careful thought is needed to holistically continue to support the existing GAS
functionality.

PS: On the aarch64 side, there are special CFI directives for managing code using Pointer
Authentication. E.g., .cfi b key frame[3]. The latter should be synthesizable by looking at
whether it is the paciasp, or pacibsp instruction.

Current Status: The CFI directives mentioned in the above-list cannot be generated by
the SCFI machinery as they need user-input. This has implications on the overall offering: note
that not handling the user-specified .cfi sections implies that the proposed implementation
will emit CFI to the default section - .eh frame. Similarly, the other implications are easy to
extrapolate.

Adding a command line with good defaults and the appropriate arguments may help manage
some of the above-mentioned directives, but clearly not all. Some of the directives apply at a
per-function granularity, so a command line option may not work out.

Summary: In summary, there indeed are some CFI directives which cannot be auto-generated;
the user is the only entity that can specify them. In the current proposal (and it’s design and im-
plementation), these CFI directives have been set aside for now. They need to be accommodated
after some more discussion.

2.2 High-level goal of the proposal
With that said, it is important now to define the goal at this point:

Generating CFI for all compiler-generated asm is NOT the goal;
Generating CFI for most patterns found in practice in hand-written asm is the goal.

When it comes to code generation, a compiler has more context than any other component in
the toolchain. The compiler may generate a variety of complex code patterns together with the
accompanying CFI information accurately as it has the full context of the user-defined functions.
Some compiler-generated asm, e.g., the usage of Dynamic Realigned Argument Pointer (DRAP)
to realign stack may be tricky to comprehend for the assembler. There are other code patterns
like indirect jumps, jump tables, etc. (more on this in later sections) which cause difficulty for

4

SCFI. Hence, unless there is a requirement to handle compiler-generated code, it appears both
non-trivial and not very practical to automatically generate CFI for compiler-generated code.

In this proposal, we focus on synthesizing CFI for most hand-written asm. As we present
the code examples in further sections, one may see that indeed there are some ”restrictions” 4

around the hand-written assembly so that GNU assembler can synthesize CFI.

2.3 New comand line option: --scfi[=all,none]
We propose to add a new command line option --scfi[=all,none] to the GNU assembler. The
default argument is all. Hence, --scfi or --scfi=all instructs the assembler to synthesize
CFI. The CFI is then emitted in the sections corresponding to whatever format are specified
when calling the assembler: .eh frame (default), .sframe (when invoked with --gsframe) etc.

Moving forward, the assembler may want to support three operation modes with respect
CFI synthesis:

1. --scfi=none: Do not synthesize any CFI.
2. --scfi=all: Synthesize CFI info for the whole assembly unit (i.e. the .s file). All user-

provided CFI directives are ignored by GAS with this command line option 5.
3. --scfi=inline: Synthesize CFI info only for inline assembly generated by the compiler.

DISCUSS: We should support a distinct option of --scfi=inline for inline asm, where
the GNU assembler consumes (and not ignores) the compiler generated CFI for the code
surrounding the inline asm. In that mode, the SCFI implementation should process these
compiler-generated CFI directives (instead of synthesizing them) in order to establish the
right CFI unwind state before the inline asm block.

Note that the assembler should be able to determine which parts of the assembly code is
inlined by looking for comments generated by the compilers:

#APP
[...]
#NO_APP

2.4 Background
In this section, we will take a look at some assembly language sequences along with their
respective accompanying CFI assembler directives. This should be helpful to then lay the
background necessary to understand what is needed for synthesizing CFI automatically. Most
of the assembly code stubs shown in this document use x86 64 insns, but the concepts should
be applicable equally well to other popular ISAs.

2.4.1 Knowing the stack usage
Clearly, knowing the stack usage is essential for knowing the location of the register saves and
for possibly validating the register restores 6. Walking through Figure 4 will help understanding
this requirement.

Note how in Figure 4, the CFA at all times is REG SP-based. This means, the stack size used
by the function must be known at all times to synthesize CFA location. The example is what
static stack usage pattern looks like.

4mostly practical restrictions. We aim to make the implementation as programmer-friendly as possible.
5This needs more discussion as we still need a way to deal with those .cfi * directives which cannot be auto-

generated. See section 2.1.
6of the callee-saved registers

5

Figure 4: Example to showcase CFI for callee-saved registers and static stack usage

1 .text
2 .globl foo
3 .type foo, @function
4 foo:
5 .cfi_startproc ## CFA = rsp -8
6 pushq %r12
7 .cfi_def_cfa_offset 16 ## CFA = rsp -16
8 .cfi_offset 12, -16
9 pushq %r13

10 .cfi_def_cfa_offset 24 ## CFA = rsp - 24
11 .cfi_offset 13, -24
12 # The function may use callee-saved registers for its use, and may even
13 # choose to spill them to stack if necessary.
14 addq %rax, %r13
15 subq $8, %r13
16 # These two pushq's of callee-saved regs must NOT generate
17 # .cfi_offset.
18 pushq %r13
19 .cfi_def_cfa_offset 32 ## CFA = rsp - 32
20 pushq %rax
21 .cfi_def_cfa_offset 40 ## CFA = rsp = 40
22 # Function manipulates %rsp to get rid of local stack usage.
23 addq $16, %rsp
24 .cfi_def_cfa_offset 24 ## CFA = rsp - 24
25 # The SCFI machinery must keep track of where the callee-saved registers
26 # are on the stack. It should generate a restore operation if the stack
27 # offsets match.
28 popq %r13
29 .cfi_restore 13
30 .cfi_def_cfa_offset 16 ## CFA = rsp - 16
31 popq %r12
32 .cfi_restore 12
33 .cfi_def_cfa_offset 8 ## CFA = rsp - 8
34 ret
35 .cfi_endproc
36 .LFE0:
37 .size foo, .-foo

6

Figure 5: Dynamic stack usage using frame-pointer register for tracking CFA

1 # Example to showcase switching between sp/fp based CFA.
2 .text
3 .globl foo
4 .type foo, @function
5 foo:
6 .cfi_startproc ## CFA = rsp - 8
7 pushq %rbp
8 .cfi_def_cfa_offset 16
9 .cfi_offset 6, -16 ## CFA = rsp - 16

10 movq %rsp, %rbp
11 .cfi_def_cfa_register 6 ## CFA = rbp - 16
12 # Begin %rsp manipulation for local stack usage (Dummy code)
13 addq %rax, %rdi
14 movq %rsp, %r12
15 addq $4, %rbx
16 andq $-16, %rax
17 subq %rax, %rsp
18 movq %rsp, %rdi
19 call bar
20 movq %r12, %rsp
21 # End %rsp manipulation for local stack usage
22 mov %rbp, %rsp
23 .cfi_def_cfa_register 7 ## CFA = rsp - 16
24 pop %rbp
25 .cfi_restore 6
26 .cfi_def_cfa_offset 8 ## CFA = rsp - 8
27 ret
28 .cfi_endproc
29 .LFE0:
30 .size foo, .-foo

Of course, some functions will need to perform dynamic stack allocation. In the case
of programs written in a high-level language, the compiler will systematically fall back on the
usage of frame-pointer register for tracking the CFA. For the purpose of synthesizing the CFI,
we assume that asm programmers will also follow a similar style. Please see Figure 5 to help
understand this code pattern.

2.4.2 Identifying the CFA

As shown in the example in Figure 4, when the function performs static stack allocation and
when the CFA is defined as an offset to the REG SP, it is important that REG SP, a.k.a., the stack
usage is precisely known at all times. Similarly, for the case of dynamic stack usage, at all times
where the function uses REG FP based CFA, the precise changes to the value of the REG FP must
be known.

In other words, the precise changes to the register used as the base for identifying the CFA,
referred to as the CFA base register in the rest of the document, must be known. Now, the
DWARF standard[1] defines the CFA as follows:

”The CFA column defines the rule which computes the Canonical Frame Address value; it
may be either a register and a signed offset that are added together, or a DWARF expression
that is evaluated.”

Hence, for compiler-generated code, the CFA can even be a DWARF expression. For the
pupose of SCFI, however, it makes sense to limit the CFA tracking to be register based only.

7

Hence,

Rule 1: At all times in a function, the CFA value must be a register and a signed offset that
are added together.

Further, whether it is static or dynamic stack usage, it makes sense to limit the base-register
for CFA tracking to two registers, without limiting the usefulness of the proposal. Hence, for
the purpose of synthesizing CFI,

Rule 2: The SCFI machinery in GAS will only allow for two CFA base registers:

1. The stack-pointer register (REG SP) itself, and
2. The frame-pointer register (REG FP)

This implies that those functions using dynamic realigned argument pointer (DRAP) to
realign stack are not currently supported. More on DRAP and synthesizing CFI for functions
which dynamically realign the stack later. That said, including the basic support for DRAP
should be doable while adhering to the above-mentioned rules for the rest of the assembly code.

2.4.3 Control-flow matters
Some functions may have multiple points of return. Each point of return may have its distinct
epilogue. To correctly synthesize CFI for such asm functions, it is important to take into account
the control flow inside the function.

PS: The complication here is that it may not be possible to generate a precise control flow
graph from assembly. There is no way for us to know the branch targets of indirect jumps.

Figure 6 shows an example of a function with two possible return paths. The compiler
generates a set of .cfi remember state and .cfi restore state to tackle the problem of syn-
thesizing CFI opcodes in wake of change of flow instructions, especially conditional branches.
The SCFI machinery must perform similarly to ensure correctness.

3 Design and Implementation
In this section, we will go over some key aspects of the design and implementation of the SCFI
feature in GNU assembler.

3.1 Identifying the boundaries of asm functions
For synthesizing CFI, the GAS will firstly need to identify the beginning and end of an assembly
function. Stack unwind information follows closely the assembly code of the function and hence,
by its nature, starts anew for each function. Luckily, the existing GNU AS directives come to
the rescue.

The implementation in the GNU assembler relies on seeing the following two markers to
identify the beginning and end of an assembly function.

For generating SCFI, a function must begin with the following pseudo-op:

.type <func-name>, @function

Lastly, the function must end with the following pseudo-op:

.size <func-name>, -.<func-name>

8

Figure 6: Control flow matters. Function with two return paths

1 .globl main
2 .type main, @function
3 main:
4 .cfi_startproc ## CFA = rsp - 8
5 pushq %rbx
6 .cfi_def_cfa_offset 16
7 .cfi_offset 3, -16 ## CFA = rsp - 16
8 movl $.LC0, %esi
9 movl $.LC1, %edi

10 call fopen
11 # Two return paths for
12 # return ferror (f) || fclose (f) != 0;
13 movq %rax, %rdi
14 movq %rax, %rbx
15 call ferror
16 movl %eax, %edx
17 testl %edx, %edx
18 je .L7
19 # Exit BB 1
20 popq %rbx ## CFA = rsp - 8
21 .cfi_remember_state
22 .cfi_def_cfa_offset 8
23 .cfi_restore 3
24 ret
25 .L7:
26 # Exit BB 2
27 .cfi_restore_state ## CFA = rsp - 16
28 movq %rbx, %rdi
29 call fclose
30 popq %rbx ## CFA = rsp - 8
31 .cfi_def_cfa_offset 8
32 .cfi_restore 3
33 testl %eax, %eax
34 setne %al
35 movzbl %al, %eax
36 ret
37 .cfi_endproc
38 .size main, .-main

9

3.2 The GAS instruction: ginsn
We define a data structure called the GAS instruction, a.k.a., the ginsn. This the fundamental
token of information exchange about executable code from the targets to the target-independent
component of the GNU assembler.

The definition of struct ginsn is presented below, and is taken from the ginsn.h header
file in gas source code. A ginsn, may need further enhancements when other targets choose to
use the SCFI machinery. At this time, a ginsn has two source operands and one destination
operand. Further details should be easy to find in the aforementioned header file.

As noted in the code comments, there may be more than one ginsn per machine instruction.
This may be true for both RISC or CISC ISAs.

At the moment, the ginsn format of instruction representation is lossy: Not all information
from the target instruction is encoded into the ginsn. Not all target instructions need to be
translated into the corresponding set of ginsn7. As and when more use-cases for ginsn are
found, this status quo will shift.

/* GAS generic instruction.

Generic instructions are used by GAS to abstract out the binary machine
instructions. In other words, ginsn is a target/ABI independent internal
representation for GAS. Note that, depending on the target, there may be
more than one ginsn per binary machine instruction.

ginsns can be used by GAS to perform validations, or even generate
additional information like, sythesizing CFI for hand-written asm.

FIXME - what back references should we keep - frag ? frchainS ?
*/

struct ginsn
{

enum ginsn_type type;
/* GAS instructions are simple instructions with GINSN_NUM_SRC_OPNDS number

of source operands and one destination operand at this time. */
struct ginsn_src src[GINSN_NUM_SRC_OPNDS];
struct ginsn_dst dst;
/* Additional information per instruction. */
uint32_t flags;
/* Symbol. For ginsn of type other than GINSN_TYPE_SYMBOL, this identifies

the end of the corresponding machine instruction in the .text segment.
These symbols are created anew by the targets and are not used elsewhere
in GAS. These can be safely cleaned up when a ginsn is free'd. */

symbolS *sym;
/* Location information for user-interfacing messaging. */
const char *file;
unsigned int line;

/* Information needed for synthesizing CFI. */
scfi_opS **scfi_ops;
uint32_t num_scfi_ops;

7Fundamentally speaking, only the information strictly necessary for correctness of SCFI is brought the GAS using
the ginsn abstraction.

10

/* Flag to keep track of visited instructions for CFG creation. */
bool visited;

ginsnS *next; /* A linked list. */
};

3.3 Target-specific functionality to generate ginsn
As noted earlier, for targets choosing SCFI, translating all machine instructions into their cor-
responding ginsn will be wasteful and above all, unnecessary.

So the question then comes:

Q2: What are the set of target instructions that are necessary to ensure the SCFI machinery
generates correct CFI for the hand-written asm?

To the best of our understanding so far, the following set of instructions are critical for
ensuring synthesis of correct CFI8:

1. All change of flow instructions, including all conditional and unconditional branches, call
and return from functions.

2. All register saves and unsaves to the stack.
3. All instructions affecting the two registers that could potentially be used as the base

register for CFA tracking. Recall that we have limited the base-register for CFA tracking
to REG SP and REG FP.

Q3: What is the right time, in the GAS workflow, to translate a target instruction into it’s
corresponding set of ginsn ?

Ideally, this should be done when the target instruction is a) fully known, and b) done
with all the intended optimizations. Further, this process must be undertaken for each target
instruction included in the answer to Q2 above. This leaves us to choose some point after the
target has successfully called output insn (); in the backend.

3.4 Fragments and fix-ups
The GAS abstraction of fragment forms the back-bone of much of the inner workings of GAS.
It is a concept which is used to identify a blob of data which eventually makes into an output
section. An important aspect of a fragment’s life-cycle is an operation called ”fix-up”.

Unfortunately, as for the second requirement of ”be done with all the intended optimiza-
tions”, it is not always possible to guarantee that all the intended optimizations are done as
some ”fix-ups” may be performed by the backend later in time. This remains an open issue, but
one that, we think, should not impact the correctness of SCFI: Even if a backend may optimize
the instruction patterns, the semantics of the target instruction will remain the same.

3.5 Algorithm for SCFI
To bring it all together, the following figure outlines the algorithm implemented in GNU assem-
bler to synthesize CFI.

synth dw2cfi (): This function takes as an input the list of ginsn(s) generated per function.
The GAS target generates this list of ginsn(s), as it assmebles each machine instruction.

8also verified via the SCFI implementation for x86 64

11

To generate CFI, at least three passes per function are needed. The first two passes ares
over the list of ginsn, whereas the third pass is over the set of basic blocks in a the gcfg, the
control flow graph.

Here is the workflow with the three steps:
1. First, to create control flow graph via build cfg (),
2. Second, forward pass to propagate the SCFI state per basic block (BB) via forward flow scfi state

(),
3. Third, backward pass to generate any .cfi remember state and .cfi restore state, if

necessary. This is done via backward flow scfi state ().
forward flow scfi state (): This function is the backbone of CFI generation as the bulk of

the CFI are generated here. This function also implements the rules specified earlier (See Rule
1 and Rule 2 in section 2.4.2). Each ginsn is processed and the SCFI unwind state object is
updated. A snapshot of the SCFI unwind state object is kept at the entry and exit of each basic
block for both functionality and implementing correctness checks (See how cmp scfi state ()
is called when we land at already visited basic blocks)

backward flow scfi state ()9: This function processes the set of basic blocks in reverse
PC order. With this backward traversal, one can find points of return from the function with
differing SCFI unwind states.

int synth_dw2cfi (ginsnS *ginsn):
gcfg = build_cfg (ginsn);
root_bb = get_rootbb_gcfg (gcfg);
init_cfi_state = scfi_state_new ();

/* Traverse the cfg and update the scfi_op per ginsn. */
ret = forward_flow_scfi_state (gcfg, entry_bb, init_state);
if (ret) handle_bad ();
/* Traverse the cfg in reverse IP order and generate .cfi_restore_state

and cfi_remember_state as necessary. */
ret = backward_flow_scfi_state (gcfg);
if (ret) handle_bad ();
return ret;

/* Recursively propagate STATE starting at BB of GCFG. */
int forward_flow_scfi_state (gcfg, bb, state):

if (bb->visited)
/* Check that the CFI state is the same as seen previously when landing

from another branch. */
ret = cmp_scfi_state (state, bb->entry_state);
if (ret)

handle_bad ();
return ret;

/* Initialize the BB's SCFI state at entry with the given STATE object. */
gbb->entry_state = scfi_state_init (state);

/* Perform symbolic execution of each ginsn in the gbb and update the
scfi_ops list of each ginsn. */

bb_for_each_insn(gbb, ginsn)
ret = gen_scfi_ops (ginsn, state);
if (ret) goto fail;

/* Initialize the BB's SCFI state at exit with the updated STATE object. */

9TBD: This routine needs more eyes and testing. It works for generating a single set of remember/restore CFI,
but there can be nested remember/restore

12

gbb->exit_state = scfi_state_init (state);
gbb->visited = true;
/* Process the next BB in DFS order. */
prev_bb = gbb;
if (gbb->num_out_gedges)

bb_for_each_edge(gbb, gedge)
gbb = gedge->dst_bb;
/* For a BB already visited, the scfi_state at entry of BB must match

the current STATE. */
if (gbb->visited && cmp_scfi_state (gbb->entry_state, state))

goto fail;

if (!gedge->visited)
gedge->visited = true;

memcpy (state, prev_bb->exit_state, sizeof (scfi_stateS));
ret = forward_flow_scfi_state (gcfg, gbb, state);
if (ret) goto fail;

return 0;
fail:

gedge->visited = true;

return 1;

int backward_flow_scfi_state (gcfg):
gcfg_get_bbs_in_prog_order (gcfg, prog_order_bbs);

i = gcfg->num_gbbs - 1;
/* Traverse in reverse program order. */
while (i > 0)

current_bb = prog_order_bbs[i];
prev_bb = prog_order_bbs[i-1];
if (cmp_scfi_state (prev_bb->exit_state, current_bb->entry_state))

/* Candidate for .cfi_restore_state found. */
ginsn = bb_get_first_ginsn (current_bb);
scfi_op_add_cfi_restore_state (ginsn);
/* Memorize current_bb now to find location for its remember state

later. */
restore_bbs[i] = current_bb;

else
bb_for_each_edge (current_bb, gedge)

dst_bb = gedge->dst_bb;
for (j = 0; j < gcfg->num_gbbs; j++)

if (restore_bbs[j] == dst_bb)
ginsn = bb_get_last_ginsn (current_bb);
scfi_op_add_cfi_remember_state (ginsn);
/* Remove the memorised restore_bb from the list. */
restore_bbs[j] = NULL;
break;

i--;

/* All .cfi_restore_state pseudo-ops must have a corresponding
.cfi_remember_state by now. */

ret = check_restore_bbs_is_null_p (restore_bbs);

return ret;

13

3.6 SCFI warnings and errors in GAS
A set of warnings and errors have been added to the current SCFI implementation. Every
situation where GAS is not sure it will be able to synthesize valid CFI is treated as an error10.
Following is a subset of the warnings and errors:

1. Warning: SCFI: asymetrical register restore
2. Error: SCFI: usage of REG FP as scratch not supported
3. Error: SCFI: unsupported stack manipulation pattern

4 Other Use-cases
The addition of the infrastructure for creation of ginsn, the control flow graph of ginsn, opens
up the window to implement other useful features in GAS, apart from SCFI.

4.1 Validation of compiler generated CFI
One may wonder if this infrastructure can be used to automatically validate compiler generated
CFI. Recall that for correct SCFI, control flow matters (see section 2.4.3). Code stubs with
indirect jumps, jump table etc. are expected for compiler generated assembly. Further, there
are practical restrictions around what assembly code is ingestible for SCFI (see Rule 1 and Rule
2) in section 2.4.2).

Even for cases when above-mentioned issues are non-existent, there, unfortunately, remain
some practical differences between the CFI generated by compiler vs. those synthesized by the
GNU assembler’s SCFI machinery. A naive comparison of the two is not possible; or at least
such a task may be harder than desired.

The following table shows a subset of cases where differences are seen.

GCC generated GNU AS generated Comments

popq %rbx
.cfi_def_cfa_offset 8
.cfi_restore 3

popq %rbx
.cfi_restore 3
.cfi_def_cfa_offset 8

Note the order of the
two CFI pseudo-ops.

testl %edx, %edx
je .L7
popq %rbx
.cfi_remember_state
.cfi_def_cfa_offset 8
ret

.L7:
.cfi_restore_state
movq %rbx, %rdi
call fclose

testl %edx, %edx
je .L7
.cfi_remember_state
popq %rbx
.cfi_restore 3
.cfi_def_cfa_offset 8
ret

.L7:
.cfi_restore_state
movq %rbx, %rdi
call fclose

Sometimes, the com-
piler does not gen-
erate .cfi restore
for insns in epilogue.
Secondly, GNU AS
generates generates
the remember and
restore state ops
at different instruc-
tions.

10as CFI synthesis is explicitly requested by the user via the command line

14

4.2 Further validation of hand-written asm
The SCFI machinery is consumer of the set of ginsn. In that sense, ginsn provide GAS with
an abstraction to understand the instructions generated by the targets. Using ginsn, GAS is
now capable of sufficient context at each asm instruction. As noted in section 3.6, GAS can
already issue some useful messaging to the user, in the context of SCFI.

Using the ginsn abstraction, it is possible to make GAS emit other useful diagnostics like11:

1. Missing CFI save for CFI restore
2. Missing CFI restore for CFI save
3. Missing user-defined label for conditional branch
4. Unreachable code

As you see, some of these warnings, especially the last two, are not SCFI related. These,
and more, are other use-cases of supporting the ginsn abstraction.

4.3 Limited program verification for BPF
Writing BPF programs so that they are accepted by the BPF verifier may turn out to be an
iterative and cumbersome task. Typically, a user will generate binary, check if verifier will accept
it, and iterate over the process until the BPF verifier OKs it.

Using the proposed GAS infrastructure, the BPF target can issue helpful diagnostics to the
user around some of the restrictions enforced by the verifier:

1. (Static size) No larger than BPF MAXINSNS12 insns.
2. There must be no unreachable code.
3. The assembler may also be able to alert the user if there exist some malformed jumps,

specifially, jumps to an undefined target.
It is important to note that the above-mentioned list is a subset of restrictions imposed by

the BPF verifier. Adding diagnostics for these in the BPF target will only reduce the pain, not
eliminate it.

5 Next Steps and Future Work
Some of the identified tasks, not in order of priority or importance are:

1. Discuss and resolve the open questions around what should be done for those CFI directives
cannot be synthesized by looking at the asm.

2. Discuss, design and implement SCFI for handling inline asm. The current command line
option of --scfi=all will ignore all compiler generated CFI for the function containing
the inlined assembly. Supporting a new argument like --scfi=inline requires that the
compiler generated CFI be not dropped for functions with inline assembly.

3. Hardening of interfaces and design by adding one more architecture to the mix. aarch64
seems to be good candidate. As noted earlier, the SCFI machinery has been implemented
as a target-independent component in GAS. So ensuring that the SCFI machinery works
for more than one ISA will be extremely helpful.

4. Testing with codebases with hand-written asm. Especially one with hand-written CFI
annotations for its asm, so that there is something to cross-check the synthesized CFI
against.

11Surely, not an exhaustive set; reviewer inputs for other useful diagnostics appreciated
12currently set to 4096

15

5. Add capability to synthesize CFI for functions using DRAP to realign stack.
6. Ensure decoupled ginsn creation from SCFI. As noted earlier, there are other use-cases

for ginsn creation, like diagnostics for hand-written asm, specific validations, and even
program verification for BPF.

Acknowledgments
The author would like to thank all the reviewers for their feedback.

References
[1] The DWARF Debugging Information Format Standard, Version 5,

https://dwarfstd.org/dwarf5std.html
[2] CFI directives in GNU AS, https://sourceware.org/binutils/docs/as/CFI-directives.html
[3] AArch64 Machine Directives in GNU AS https://sourceware.org/binutils/docs/as/AArch64-

Directives.html
[4] binutils-gdb: gas: allow labeling of CFI instructions https://sourceware.org/git/?p=binutils-

gdb.git;a=commit;h=696025802ec3273fde5cbf82c215a3d795435c1a

16

