From mboxrd@z Thu Jan 1 00:00:00 1970 Return-Path: Received: by sourceware.org (Postfix, from userid 1005) id 7B5B0384F6DC; Thu, 17 Nov 2022 21:52:07 +0000 (GMT) DKIM-Filter: OpenDKIM Filter v2.11.0 sourceware.org 7B5B0384F6DC DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=gcc.gnu.org; s=default; t=1668721927; bh=8hvF3z04mahJMW2PXtmk0DjtC1DvmfyKIT9LMLjauUU=; h=From:To:Subject:Date:From; b=X/4VDivpYul0Mf1oTLxd9QQwPqkEGYHeWUlmvdqoIJxsFjvy6D5dJM5uTOTBdTV5D rPxuhLJ+PMa/GsDylZ6D+GSNKusg8YPywEbgztf0r0QkJ6qeIyIwOXl4+jved+tgxm Ddsx6PXkqImuHbTgXHySTwt5SJYAzqdX0cAHlREE= Content-Type: text/plain; charset="us-ascii" MIME-Version: 1.0 Content-Transfer-Encoding: 7bit From: Michael Meissner To: gcc-cvs@gcc.gnu.org Subject: [gcc(refs/users/meissner/heads/dmf004)] Rework 128-bit complex multiply and divide. X-Act-Checkin: gcc X-Git-Author: Michael Meissner X-Git-Refname: refs/users/meissner/heads/dmf004 X-Git-Oldrev: 7b3bd6e6e34ad55a15726229c9f02fc3c20c5179 X-Git-Newrev: ff75e486a237e82046f307bc0ac4fb596859f91b Message-Id: <20221117215207.7B5B0384F6DC@sourceware.org> Date: Thu, 17 Nov 2022 21:52:07 +0000 (GMT) List-Id: https://gcc.gnu.org/g:ff75e486a237e82046f307bc0ac4fb596859f91b commit ff75e486a237e82046f307bc0ac4fb596859f91b Author: Michael Meissner Date: Wed Nov 9 00:30:02 2022 -0500 Rework 128-bit complex multiply and divide. This function reworks how the complex multiply and divide built-in functions are done. Previously we created built-in declarations for doing long double complex multiply and divide when long double is IEEE 128-bit. The old code also did not support __ibm128 complex multiply and divide if long double is IEEE 128-bit. In terms of history, I wrote the original code just as I was starting to test GCC on systems where IEEE 128-bit long double was the default. At the time, we had not yet started mangling the built-in function names as a way to bridge going from a system with 128-bit IBM long double to 128-bin IEEE long double. The original code depends on there only being two 128-bit types invovled. With the next patch in this series, this assumption will no longer be true. When long double is IEEE 128-bit, there will be 2 IEEE 128-bit types (one for the explicit __float128/_Float128 type and one for long double). The problem is we cannot create two separate built-in functions that resolve to the same name. This is a requirement of add_builtin_function and the C front end. That means for the 3 possible modes (IFmode, KFmode, and TFmode), you can only use 2 of them. This code does not create the built-in declaration with the changed name. Instead, it uses the TARGET_MANGLE_DECL_ASSEMBLER_NAME hook to change the name before it is written out to the assembler file like it now does for all of the other long double built-in functions. We need to disable using this mapping when we are building libgcc, specifically when it is building the floating point 128-bit multiply and divide functions. The flag that is used when libgcc is built (-fbuilding-libcc) is only available in the C/C++ front ends. We need to remember that we are building libgcc in the rs6000-c.cc support to be able to use this later to decided whether to mangle the decl assembler name or not. When I wrote these patches, I discovered that __ibm128 complex multiply and divide had originally not been supported if long double is IEEE 128-bit as it would generate calls to __mulic3 and __divic3. I added tests in the testsuite to verify that the correct name (i.e. __multc3 and __divtc3) is used in this case. I tested all 3 patchs for PR target/107299 on: 1) LE Power10 using --with-cpu=power10 --with-long-double-format=ieee 2) LE Power10 using --with-cpu=power10 --with-long-double-format=ibm 3) LE Power9 using --with-cpu=power9 --with-long-double-format=ibm 4) BE Power8 using --with-cpu=power8 --with-long-double-format=ibm Once all 3 patches have been applied, we can once again build GCC when long double is IEEE 128-bit. There were no other regressions with these patches. Can I check these patches into the trunk? 2022-11-09 Michael Meissner gcc/ PR target/107299 * config/rs6000/rs6000-c.cc (rs6000_cpu_cpp_builtins): Set building_libgcc. * config/rs6000/rs6000.cc (create_complex_muldiv): Delete. (init_float128_ieee): Delete code to switch complex multiply and divide for long double. (complex_multiply_builtin_code): New helper function. (complex_divide_builtin_code): Likewise. (rs6000_mangle_decl_assembler_name): Add support for mangling the name of complex 128-bit multiply and divide built-in functions. * config/rs6000/rs6000.opt (building_libgcc): New target variable. gcc/testsuite/ PR target/107299 * gcc.target/powerpc/divic3-1.c: New test. * gcc.target/powerpc/divic3-2.c: Likewise. * gcc.target/powerpc/mulic3-1.c: Likewise. * gcc.target/powerpc/mulic3-2.c: Likewise. Diff: --- gcc/ChangeLog.meissner | 330 +++++++++++++++++++++++++++- gcc/config/rs6000/rs6000-c.cc | 8 + gcc/config/rs6000/rs6000.cc | 110 ++++++---- gcc/config/rs6000/rs6000.opt | 4 + gcc/testsuite/gcc.target/powerpc/divic3-1.c | 18 ++ gcc/testsuite/gcc.target/powerpc/divic3-2.c | 17 ++ gcc/testsuite/gcc.target/powerpc/mulic3-1.c | 18 ++ gcc/testsuite/gcc.target/powerpc/mulic3-2.c | 17 ++ 8 files changed, 474 insertions(+), 48 deletions(-) diff --git a/gcc/ChangeLog.meissner b/gcc/ChangeLog.meissner index 1f2cc7b8288..5a6fa542ab6 100644 --- a/gcc/ChangeLog.meissner +++ b/gcc/ChangeLog.meissner @@ -1,4 +1,332 @@ +==================== Dmf004 branch, patch #4. + +Patch libgcc to always use _Float128 and _Complex _Float128 on PowerPC. + 2022-11-09 Michael Meissner - Clone branch +libgcc/ + + * config/rs6000/quad-float128.h (TF): Delete definition. + (TFtype): Define to be _Float128. + (TCtype): Change to be _Complex _Float128. + * libgcc2.h (TFtype): Allow MD code to override definition. + (TCtype): Likewise. + * soft-fp/quad.h (TFtype): Likewise. + +==================== Dmf004 branch, patch #3. + +Update float 128-bit conversions, PR target/107299. + +This patch fixes two tests that are still failing when long double is IEEE +128-bit after the previous 2 patches for PR target/107299 have been applied. +The tests are: + + gcc.target/powerpc/convert-fp-128.c + gcc.target/powerpc/pr85657-3.c + +This patch is a rewrite of the patch submitted on August 18th: + +| https://gcc.gnu.org/pipermail/gcc-patches/2022-August/599988.html + +This patch reworks the conversions between 128-bit binary floating point types. +Previously, we would call rs6000_expand_float128_convert to do all conversions. +Now, we only define the conversions between the same representation that turn +into a NOP. The appropriate extend or truncate insn is generated, and after +register allocation, it is converted to a move. + +This patch also fixes two places where we want to override the external name +for the conversion function, and the wrong optab was used. Previously, +rs6000_expand_float128_convert would handle the move or generate the call as +needed. Now, it lets the machine independent code generate the call. But if +we use the machine independent code to generate the call, we need to update the +name for two optabs where a truncate would be used in terms of converting +between the modes. This patch updates those two optabs. + +I tested this patch on: + + 1) LE Power10 using --with-cpu=power10 --with-long-double-format=ieee + 2) LE Power10 using --with-cpu=power10 --with-long-double-format=ibm + 3) LE Power9 using --with-cpu=power9 --with-long-double-format=ibm + 4) BE Power8 using --with-cpu=power8 --with-long-double-format=ibm + +In the past I have also tested this exact patch on the following systems: + + 1) LE Power10 using --with-cpu=power9 --with-long-double-format=ibm + 2) LE Power10 using --with-cpu=power8 --with-long-double-format=ibm + 3) LE Power10 using --with-cpu=power10 --with-long-double-format=ibm + +There were no regressions in the bootstrap process or running the tests (after +applying all 3 patches for PR target/107299). Can I check this patch into the +trunk? + +2022-11-09 Michael Meissner + +gcc/ + + PR target/107299 + * config/rs6000/rs6000.cc (init_float128_ieee): Use the correct + float_extend or float_truncate optab based on how the machine converts + between IEEE 128-bit and IBM 128-bit. + * config/rs6000/rs6000.md (IFKF): Delete. + (IFKF_reg): Delete. + (extendiftf2): Rewrite to be a move if IFmode and TFmode are both IBM + 128-bit. Do not run if TFmode is IEEE 128-bit. + (extendifkf2): Delete. + (extendtfkf2): Delete. + (extendtfif2): Delete. + (trunciftf2): Delete. + (truncifkf2): Delete. + (trunckftf2): Delete. + (extendkftf2): Implement conversion of IEEE 128-bit types as a move. + (trunctfif2): Delete. + (trunctfkf2): Implement conversion of IEEE 128-bit types as a move. + (extendtf2_internal): Delete. + (extendtf2_internal): Delete. + +==================== Dmf004 branch, patch #2. + +Make __float128 use the _Float128 type, PR target/107299. + +This patch fixes the issue that GCC cannot build when the default long double +is IEEE 128-bit. It fails in building libgcc, specifically when it is trying +to buld the __mulkc3 function in libgcc. It is failing in gimple-range-fold.cc +during the evrp pass. Ultimately it is failing because the code declared the +type to use TFmode but it used F128 functions (i.e. KFmode). + + typedef float TFtype __attribute__((mode (TF))); + typedef __complex float TCtype __attribute__((mode (TC))); + + TCtype + __mulkc3_sw (TFtype a, TFtype b, TFtype c, TFtype d) + { + TFtype ac, bd, ad, bc, x, y; + TCtype res; + + ac = a * c; + bd = b * d; + ad = a * d; + bc = b * c; + + x = ac - bd; + y = ad + bc; + + if (__builtin_isnan (x) && __builtin_isnan (y)) + { + _Bool recalc = 0; + if (__builtin_isinf (a) || __builtin_isinf (b)) + { + + a = __builtin_copysignf128 (__builtin_isinf (a) ? 1 : 0, a); + b = __builtin_copysignf128 (__builtin_isinf (b) ? 1 : 0, b); + if (__builtin_isnan (c)) + c = __builtin_copysignf128 (0, c); + if (__builtin_isnan (d)) + d = __builtin_copysignf128 (0, d); + recalc = 1; + } + if (__builtin_isinf (c) || __builtin_isinf (d)) + { + + c = __builtin_copysignf128 (__builtin_isinf (c) ? 1 : 0, c); + d = __builtin_copysignf128 (__builtin_isinf (d) ? 1 : 0, d); + if (__builtin_isnan (a)) + a = __builtin_copysignf128 (0, a); + if (__builtin_isnan (b)) + b = __builtin_copysignf128 (0, b); + recalc = 1; + } + if (!recalc + && (__builtin_isinf (ac) || __builtin_isinf (bd) + || __builtin_isinf (ad) || __builtin_isinf (bc))) + { + + if (__builtin_isnan (a)) + a = __builtin_copysignf128 (0, a); + if (__builtin_isnan (b)) + b = __builtin_copysignf128 (0, b); + if (__builtin_isnan (c)) + c = __builtin_copysignf128 (0, c); + if (__builtin_isnan (d)) + d = __builtin_copysignf128 (0, d); + recalc = 1; + } + if (recalc) + { + x = __builtin_inff128 () * (a * c - b * d); + y = __builtin_inff128 () * (a * d + b * c); + } + } + + __real__ res = x; + __imag__ res = y; + return res; + } + +Currently GCC uses the long double type node for __float128 if long double is +IEEE 128-bit. It did not use the node for _Float128. + +Originally this was noticed if you call the nansq function to make a signaling +NaN (nansq is mapped to nansf128). Because the type node for _Float128 is +different from __float128, the machine independent code converts signaling NaNs +to quiet NaNs if the types are not compatible. The following tests used to +fail when run on a system where long double is IEEE 128-bit: + + gcc.dg/torture/float128-nan.c + gcc.target/powerpc/nan128-1.c + +This patch makes both __float128 and _Float128 use the same type node. + +One side effect of not using the long double type node for __float128 is that we +must only use KFmode for _Float128/__float128. The libstdc++ library won't +build if we use TFmode for _Float128 and __float128 when long double is IEEE +128-bit. + +Another minor side effect is that the f128 round to odd fused multiply-add +function will not merge negatition with the FMA operation when the type is long +double. If the type is __float128 or _Float128, then it will continue to do the +optimization. The round to odd functions are defined in terms of __float128 +arguments. For example: + long double + do_fms (long double a, long double b, long double c) + { + return __builtin_fmaf128_round_to_odd (a, b, -c); + } + +will generate (assuming -mabi=ieeelongdouble): + + xsnegqp 4,4 + xsmaddqpo 4,2,3 + xxlor 34,36,36 + +while: + + __float128 + do_fms (__float128 a, __float128 b, __float128 c) + { + return __builtin_fmaf128_round_to_odd (a, b, -c); + } + +will generate: + + xsmsubqpo 4,2,3 + xxlor 34,36,36 + +I tested all 3 patchs for PR target/107299 on: + + 1) LE Power10 using --with-cpu=power10 --with-long-double-format=ieee + 2) LE Power10 using --with-cpu=power10 --with-long-double-format=ibm + 3) LE Power9 using --with-cpu=power9 --with-long-double-format=ibm + 4) BE Power8 using --with-cpu=power8 --with-long-double-format=ibm + +Once all 3 patches have been applied, we can once again build GCC when long +double is IEEE 128-bit. There were no other regressions with these patches. +Can I check these patches into the trunk? + +2022-11-09 Michael Meissner + +gcc/ + + PR target/107299 + * config/rs6000/rs6000-builtin.cc (rs6000_init_builtins): Always use the + _Float128 type for __float128. + (rs6000_expand_builtin): Only change a KFmode built-in to TFmode, if the + built-in passes or returns TFmode. If the predicate failed because the + modes were different, use convert_move to load up the value instead of + copy_to_mode_reg. + * config/rs6000/rs6000.cc (rs6000_translate_mode_attribute): Don't + translate IEEE 128-bit floating point modes to explicit IEEE 128-bit + modes (KFmode or KCmode), even if long double is IEEE 128-bit. + (rs6000_libgcc_floating_mode_supported_p): Support KFmode all of the + time if we support IEEE 128-bit floating point. + (rs6000_floatn_mode): _Float128 and _Float128x always uses KFmode. + +gcc/testsuite/ + + PR target/107299 + * gcc.target/powerpc/float128-hw12.c: New test. + * gcc.target/powerpc/float128-hw13.c: Likewise. + * gcc.target/powerpc/float128-hw4.c: Update insns. + +==================== Dmf004 branch, patch #1. + +Rework 128-bit complex multiply and divide. + +This function reworks how the complex multiply and divide built-in functions are +done. Previously we created built-in declarations for doing long double complex +multiply and divide when long double is IEEE 128-bit. The old code also did not +support __ibm128 complex multiply and divide if long double is IEEE 128-bit. + +In terms of history, I wrote the original code just as I was starting to test +GCC on systems where IEEE 128-bit long double was the default. At the time, we +had not yet started mangling the built-in function names as a way to bridge +going from a system with 128-bit IBM long double to 128-bin IEEE long double. + +The original code depends on there only being two 128-bit types invovled. With +the next patch in this series, this assumption will no longer be true. When +long double is IEEE 128-bit, there will be 2 IEEE 128-bit types (one for the +explicit __float128/_Float128 type and one for long double). + +The problem is we cannot create two separate built-in functions that resolve to +the same name. This is a requirement of add_builtin_function and the C front +end. That means for the 3 possible modes (IFmode, KFmode, and TFmode), you can +only use 2 of them. + +This code does not create the built-in declaration with the changed name. +Instead, it uses the TARGET_MANGLE_DECL_ASSEMBLER_NAME hook to change the name +before it is written out to the assembler file like it now does for all of the +other long double built-in functions. + +We need to disable using this mapping when we are building libgcc, specifically +when it is building the floating point 128-bit multiply and divide functions. +The flag that is used when libgcc is built (-fbuilding-libcc) is only available +in the C/C++ front ends. We need to remember that we are building libgcc in the +rs6000-c.cc support to be able to use this later to decided whether to mangle +the decl assembler name or not. + +When I wrote these patches, I discovered that __ibm128 complex multiply and +divide had originally not been supported if long double is IEEE 128-bit as it +would generate calls to __mulic3 and __divic3. I added tests in the testsuite +to verify that the correct name (i.e. __multc3 and __divtc3) is used in this +case. + +I tested all 3 patchs for PR target/107299 on: + + 1) LE Power10 using --with-cpu=power10 --with-long-double-format=ieee + 2) LE Power10 using --with-cpu=power10 --with-long-double-format=ibm + 3) LE Power9 using --with-cpu=power9 --with-long-double-format=ibm + 4) BE Power8 using --with-cpu=power8 --with-long-double-format=ibm + +Once all 3 patches have been applied, we can once again build GCC when long +double is IEEE 128-bit. There were no other regressions with these patches. +Can I check these patches into the trunk? + +2022-11-09 Michael Meissner + +gcc/ + + PR target/107299 + * config/rs6000/rs6000-c.cc (rs6000_cpu_cpp_builtins): Set + building_libgcc. + * config/rs6000/rs6000.cc (create_complex_muldiv): Delete. + (init_float128_ieee): Delete code to switch complex multiply and divide + for long double. + (complex_multiply_builtin_code): New helper function. + (complex_divide_builtin_code): Likewise. + (rs6000_mangle_decl_assembler_name): Add support for mangling the name + of complex 128-bit multiply and divide built-in functions. + * config/rs6000/rs6000.opt (building_libgcc): New target variable. + +gcc/testsuite/ + + PR target/107299 + * gcc.target/powerpc/divic3-1.c: New test. + * gcc.target/powerpc/divic3-2.c: Likewise. + * gcc.target/powerpc/mulic3-1.c: Likewise. + * gcc.target/powerpc/mulic3-2.c: Likewise. + +==================== Dmf004 branch, head. + +2022-11-09 Michael Meissner + + Clone branch diff --git a/gcc/config/rs6000/rs6000-c.cc b/gcc/config/rs6000/rs6000-c.cc index 56609462629..5c2f3bcee9f 100644 --- a/gcc/config/rs6000/rs6000-c.cc +++ b/gcc/config/rs6000/rs6000-c.cc @@ -780,6 +780,14 @@ rs6000_cpu_cpp_builtins (cpp_reader *pfile) || DEFAULT_ABI == ABI_ELFv2 || (DEFAULT_ABI == ABI_AIX && !rs6000_compat_align_parm)) builtin_define ("__STRUCT_PARM_ALIGN__=16"); + + /* Store whether or not we are building libgcc. This is needed to disable + generating the alternate names for 128-bit complex multiply and divide. + We need to disable generating __multc3, __divtc3, __mulkc3, and __divkc3 + when we are building those functions in libgcc. The variable + flag_building_libgcc is only available for the C family of front-ends. + We set this variable here to disable generating the alternate names. */ + building_libgcc = flag_building_libgcc; } diff --git a/gcc/config/rs6000/rs6000.cc b/gcc/config/rs6000/rs6000.cc index a85d7630b41..cfb6227e27b 100644 --- a/gcc/config/rs6000/rs6000.cc +++ b/gcc/config/rs6000/rs6000.cc @@ -11123,26 +11123,6 @@ init_float128_ibm (machine_mode mode) } } -/* Create a decl for either complex long double multiply or complex long double - divide when long double is IEEE 128-bit floating point. We can't use - __multc3 and __divtc3 because the original long double using IBM extended - double used those names. The complex multiply/divide functions are encoded - as builtin functions with a complex result and 4 scalar inputs. */ - -static void -create_complex_muldiv (const char *name, built_in_function fncode, tree fntype) -{ - tree fndecl = add_builtin_function (name, fntype, fncode, BUILT_IN_NORMAL, - name, NULL_TREE); - - set_builtin_decl (fncode, fndecl, true); - - if (TARGET_DEBUG_BUILTIN) - fprintf (stderr, "create complex %s, fncode: %d\n", name, (int) fncode); - - return; -} - /* Set up IEEE 128-bit floating point routines. Use different names if the arguments can be passed in a vector register. The historical PowerPC implementation of IEEE 128-bit floating point used _q_ for the names, so @@ -11154,32 +11134,6 @@ init_float128_ieee (machine_mode mode) { if (FLOAT128_VECTOR_P (mode)) { - static bool complex_muldiv_init_p = false; - - /* Set up to call __mulkc3 and __divkc3 under -mabi=ieeelongdouble. If - we have clone or target attributes, this will be called a second - time. We want to create the built-in function only once. */ - if (mode == TFmode && TARGET_IEEEQUAD && !complex_muldiv_init_p) - { - complex_muldiv_init_p = true; - built_in_function fncode_mul = - (built_in_function) (BUILT_IN_COMPLEX_MUL_MIN + TCmode - - MIN_MODE_COMPLEX_FLOAT); - built_in_function fncode_div = - (built_in_function) (BUILT_IN_COMPLEX_DIV_MIN + TCmode - - MIN_MODE_COMPLEX_FLOAT); - - tree fntype = build_function_type_list (complex_long_double_type_node, - long_double_type_node, - long_double_type_node, - long_double_type_node, - long_double_type_node, - NULL_TREE); - - create_complex_muldiv ("__mulkc3", fncode_mul, fntype); - create_complex_muldiv ("__divkc3", fncode_div, fntype); - } - set_optab_libfunc (add_optab, mode, "__addkf3"); set_optab_libfunc (sub_optab, mode, "__subkf3"); set_optab_libfunc (neg_optab, mode, "__negkf2"); @@ -28142,6 +28096,25 @@ rs6000_starting_frame_offset (void) return RS6000_STARTING_FRAME_OFFSET; } +/* Internal function to return the built-in function id for the complex + multiply operation for a given mode. */ + +static inline built_in_function +complex_multiply_builtin_code (machine_mode mode) +{ + return (built_in_function) (BUILT_IN_COMPLEX_MUL_MIN + mode + - MIN_MODE_COMPLEX_FLOAT); +} + +/* Internal function to return the built-in function id for the complex divide + operation for a given mode. */ + +static inline built_in_function +complex_divide_builtin_code (machine_mode mode) +{ + return (built_in_function) (BUILT_IN_COMPLEX_DIV_MIN + mode + - MIN_MODE_COMPLEX_FLOAT); +} /* On 64-bit Linux and Freebsd systems, possibly switch the long double library function names from l to f128 if the default long double type is @@ -28160,11 +28133,54 @@ rs6000_starting_frame_offset (void) only do this transformation if the __float128 type is enabled. This prevents us from doing the transformation on older 32-bit ports that might have enabled using IEEE 128-bit floating point as the default long double - type. */ + type. + + We also use the TARGET_MANGLE_DECL_ASSEMBLER_NAME hook to change the + function names used for complex multiply and divide to the appropriate + names. */ static tree rs6000_mangle_decl_assembler_name (tree decl, tree id) { + /* Handle complex multiply/divide. For IEEE 128-bit, use __mulkc3 or + __divkc3 and for IBM 128-bit use __multc3 and __divtc3. */ + if (TARGET_FLOAT128_TYPE + && !building_libgcc + && TREE_CODE (decl) == FUNCTION_DECL + && DECL_IS_UNDECLARED_BUILTIN (decl) + && DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL) + { + built_in_function id = DECL_FUNCTION_CODE (decl); + const char *newname = NULL; + + if (id == complex_multiply_builtin_code (KCmode)) + newname = "__mulkc3"; + + else if (id == complex_multiply_builtin_code (ICmode)) + newname = "__multc3"; + + else if (id == complex_multiply_builtin_code (TCmode)) + newname = (TARGET_IEEEQUAD) ? "__mulkc3" : "__multc3"; + + else if (id == complex_divide_builtin_code (KCmode)) + newname = "__divkc3"; + + else if (id == complex_divide_builtin_code (ICmode)) + newname = "__divtc3"; + + else if (id == complex_divide_builtin_code (TCmode)) + newname = (TARGET_IEEEQUAD) ? "__divkc3" : "__divtc3"; + + if (newname) + { + if (TARGET_DEBUG_BUILTIN) + fprintf (stderr, "Map complex mul/div => %s\n", newname); + + return get_identifier (newname); + } + } + + /* Map long double built-in functions if long double is IEEE 128-bit. */ if (TARGET_FLOAT128_TYPE && TARGET_IEEEQUAD && TARGET_LONG_DOUBLE_128 && TREE_CODE (decl) == FUNCTION_DECL && DECL_IS_UNDECLARED_BUILTIN (decl) diff --git a/gcc/config/rs6000/rs6000.opt b/gcc/config/rs6000/rs6000.opt index b63a5d443af..e2de03dda92 100644 --- a/gcc/config/rs6000/rs6000.opt +++ b/gcc/config/rs6000/rs6000.opt @@ -100,6 +100,10 @@ unsigned int rs6000_recip_control TargetVariable unsigned int rs6000_debug +;; Whether we are building libgcc or not. +TargetVariable +bool building_libgcc = false + ;; Whether to enable the -mfloat128 stuff without necessarily enabling the ;; __float128 keyword. TargetSave diff --git a/gcc/testsuite/gcc.target/powerpc/divic3-1.c b/gcc/testsuite/gcc.target/powerpc/divic3-1.c new file mode 100644 index 00000000000..1cc6b1be904 --- /dev/null +++ b/gcc/testsuite/gcc.target/powerpc/divic3-1.c @@ -0,0 +1,18 @@ +/* { dg-do compile { target { powerpc*-*-* } } } */ +/* { dg-require-effective-target powerpc_p8vector_ok } */ +/* { dg-require-effective-target longdouble128 } */ +/* { dg-require-effective-target ppc_float128_sw } */ +/* { dg-options "-O2 -mpower8-vector -mabi=ieeelongdouble -Wno-psabi" } */ + +/* Check that complex divide generates the right call for __ibm128 when long + double is IEEE 128-bit floating point. */ + +typedef _Complex long double c_ibm128_t __attribute__((mode(__IC__))); + +void +divide (c_ibm128_t *p, c_ibm128_t *q, c_ibm128_t *r) +{ + *p = *q / *r; +} + +/* { dg-final { scan-assembler "bl __divtc3" } } */ diff --git a/gcc/testsuite/gcc.target/powerpc/divic3-2.c b/gcc/testsuite/gcc.target/powerpc/divic3-2.c new file mode 100644 index 00000000000..8ff342e0116 --- /dev/null +++ b/gcc/testsuite/gcc.target/powerpc/divic3-2.c @@ -0,0 +1,17 @@ +/* { dg-do compile { target { powerpc*-*-* } } } */ +/* { dg-require-effective-target powerpc_p8vector_ok } */ +/* { dg-require-effective-target longdouble128 } */ +/* { dg-options "-O2 -mpower8-vector -mabi=ibmlongdouble -Wno-psabi" } */ + +/* Check that complex divide generates the right call for __ibm128 when long + double is IBM 128-bit floating point. */ + +typedef _Complex long double c_ibm128_t __attribute__((mode(__TC__))); + +void +divide (c_ibm128_t *p, c_ibm128_t *q, c_ibm128_t *r) +{ + *p = *q / *r; +} + +/* { dg-final { scan-assembler "bl __divtc3" } } */ diff --git a/gcc/testsuite/gcc.target/powerpc/mulic3-1.c b/gcc/testsuite/gcc.target/powerpc/mulic3-1.c new file mode 100644 index 00000000000..4cd773c4b06 --- /dev/null +++ b/gcc/testsuite/gcc.target/powerpc/mulic3-1.c @@ -0,0 +1,18 @@ +/* { dg-do compile { target { powerpc*-*-* } } } */ +/* { dg-require-effective-target powerpc_p8vector_ok } */ +/* { dg-require-effective-target longdouble128 } */ +/* { dg-require-effective-target ppc_float128_sw } */ +/* { dg-options "-O2 -mpower8-vector -mabi=ieeelongdouble -Wno-psabi" } */ + +/* Check that complex multiply generates the right call for __ibm128 when long + double is IEEE 128-bit floating point. */ + +typedef _Complex long double c_ibm128_t __attribute__((mode(__IC__))); + +void +multiply (c_ibm128_t *p, c_ibm128_t *q, c_ibm128_t *r) +{ + *p = *q * *r; +} + +/* { dg-final { scan-assembler "bl __multc3" } } */ diff --git a/gcc/testsuite/gcc.target/powerpc/mulic3-2.c b/gcc/testsuite/gcc.target/powerpc/mulic3-2.c new file mode 100644 index 00000000000..36fe8bc3061 --- /dev/null +++ b/gcc/testsuite/gcc.target/powerpc/mulic3-2.c @@ -0,0 +1,17 @@ +/* { dg-do compile { target { powerpc*-*-* } } } */ +/* { dg-require-effective-target powerpc_p8vector_ok } */ +/* { dg-require-effective-target longdouble128 } */ +/* { dg-options "-O2 -mpower8-vector -mabi=ibmlongdouble -Wno-psabi" } */ + +/* Check that complex multiply generates the right call for __ibm128 when long + double is IBM 128-bit floating point. */ + +typedef _Complex long double c_ibm128_t __attribute__((mode(__TC__))); + +void +multiply (c_ibm128_t *p, c_ibm128_t *q, c_ibm128_t *r) +{ + *p = *q * *r; +} + +/* { dg-final { scan-assembler "bl __multc3" } } */