Porting GCC Compiler

!'_ Part | : How GCC works?

Chol, Hyung-Kyu

hectoct@altair.snu.ac.kr

July 17, 2003

Microprocessor Architecture and System Software Laboratory

About this presentation material

= Basically this document is based on GCC 2.95.2

= Some example are from Calm32(Samsung) port of GCC
2.95.2

= This document have been updated to follow up
GCC 3.4.

Microprocessor Architecture and SystemSoftware Laboratory

Main Goal of GCC

= Make a good, fast compiler

= for machines on which the GNU system aims to
run including GNU/Linux variants
= /ntis at least a 32-bit type
= have several general registers

= with a flat (hon-segmented) byte addressed data
address space (the code address space can be
separate).

= Target AB/(application binary interface)s may have 8, 16,
32 or 64-bit int type. char can be wider than 8 bits

= Elegance, theoretical power and simplicity are
only secondary

Microprocessor Architecture and SystemSoftware Laboratory

GCC Compilation System

= Complilation system includes the phases
= Preprocessor
= Compiler
= Optimizer
= Assembler
= Linker

s Compliler Driver coordinates these
phases.

Microprocessor Architecture and SystemSoftware Laboratory

* GCC Execution

qoc ' ' (Inputfile)
 outputfile

gas ld
(assembler) (linker)

Microprocessor Architecture and SystemSoftware Laboratory

The Structure of GCC Compiler
*» U=

_ Pasng

Assembly

Microprocessor Architecture and SystemSoftware Laboratory

* GCC Compiler flow

uonaunj yoes 104
uonew.ojul builbbngap
O/M 10 UM
9p0) JaguIassy

IR - Tree Representation

IR - Register Transfer Language (RTL)

Microprocessor Architecture and SystemSoftware Laboratory

Intermediate Language (1/2)

= RTL(Register Transfer Language)
= Used to describe /nsns (Instrucitons)
= Written in LISP-like form

(set (mem:Sl (reg: S1 54))
(reg:Sl 53))

Above RTL statement means ‘“‘set memory pointed
by register 54 with value In register 53~
1.e. st [r54], r53

/ N

destination source
Microprocessor Architecture and SystemSoftware Laboratory

Intermediate Language (2/2)

Example of RTL
(plus:Sl (reg:S1 55) (const_int -1))

Adds two 4-byte integer (SImode) operands.

First operand is register
= Register is also 4-byte integer.
= Register number is 55.

Second operand is constant integer.
= Value is “-1”,
= Mode is VOIDmode (not given).

Microprocessor Architecture and SystemSoftware Laboratory

Intermediate Language :
machine mode

= Blmode
= a single bit, for predicate registers

= [QI/HI/SI/DI/TI/Ol]lmode
= Quarter-Integer(1bytes)
= Half-Integer(2bytes)
= Single Integer(4bytes)
= Double Integer(8bytes)
= Tetra Integer(16bytes)
= Octa Integer(32bytes)

= PSImode

= Partial single integer mode which occupies for bytes but doesn’t
really use all four. e.g. pointers on some machines

= And many other machine mode such as float-point mode,
complex mode and etc.

Microprocessor Architecture and SystemSoftware Laboratory

Three Main Conversions in the compiler

= The front end reads the source code ant builds a
parse tree.

= The parse tree is used to generate an RTL /nsn list
based on named instruction patterns.

= The /nsnlist is matched against the R7L templates
to produces assembler code.

Register
Parse Transfer Assembler

(RTL)

Microprocessor Architecture and SystemSoftware Laboratory

Name, RTL pattern and Assembler code

= Tree has pre-defined standard names.
Name 2 —— RTL Pattern 3 -
Name 3 —— RITL Pattern 4 -

— Optimizations

AN
A
Al 1
N
N 1
\I | |

Register
Parse Transfer __. Assembler
(RTL)

Microprocessor Architecture and SystemSoftware Laboratory

Optimizations

= Tree optimization
= tree based inlining
= constant folding
= some arithmetic simplification

= RTL optimization
= performs many well known optimizations

= €.g. jJump optimization, common subexpression
elimination (CSE), loop optimization, if-
conversion, instruction scheduling, register
allocation and etc

Microprocessor Architecture and SystemSoftware Laboratory

T
O
=
ﬂ
O
S
O
=
D

N |

ihould we modify these all?

NOT

uonounj yoes 104
O/M 1O Ul
ap0) JaquIasSy

uonew.ojul builbbngap

Microprocessor Architecture and SystemSoftware Laboratory

Then how ? (1/2)

= Just write below 3 files In
<gcc_root>/gcc/config/ machine/

= /machine.md . machine description
= machine.h . target description macros

s /machine.c : user-defined functions
used In machine.md and machine.h

= e.g. SPARC

= INn <gcc_root>/gcc/config/sparc/
« Sparc.md, sparc.h, sparc.c

Microprocessor Architecture and SystemSoftware Laboratory

Then how ? (2/2)

= Then let Makefile does below two
jobs
= Generate some .c and .h files from
machine description(/machine.md) file

=« Then actually compile .c and .h files
Including generated files.

Microprocessor Architecture and SystemSoftware Laboratory

Build process (1/2)

machine.md
machine.h
machine.c

Microprocessor Architecture and SystemSoftware Laboratory

* Build process (2/2)

~—~ machine.md

machine.b
N_—"

=\

DBX, SDB, DWARF, DWARF2, VMS are supported

Microprocessor Architecture and SystemSoftware Laboratory

machine.c

I I a

Machine Desciption

= /machine.md contains machine description

= Machine Description

= CPU description
= Functional Units, Latency and etc

= RTL Patterns

= Used when convert Tree into RTL
= All kind of RTL Patterns which can be generated

= Assembler mnemonic
= efcC.

Microprocessor Architecture and SystemSoftware Laboratory

Target Description Macro

= /machine.h contains target description macros

= Target Description Macro

= Storage layout
= alignment, endian, structure padding and etc

ABI(Application Binary Interface)
= calling convention, stack layout and etc

= Register usage
= allocation strategy, how value fit in registers and etc

= Defining output assembler language

= Controlling Debugging Information Format
= Library supports

= etc.

Microprocessor Architecture and SystemSoftware Laboratory

Porting GCC Compiler

!'_ Part Il : In detalls

Chol, Hyung-Kyu

hectoct@altair.snu.ac.kr

July 17, 2003

Microprocessor Architecture and System Software Laboratory

Assember Code
With or w/o

debugging information

H

Assembler Code
Generation

-

RTL Optimization

A

-

RTL Generation

A

’/

Tree Optimization

:h GCC Compiler flow

For each function

Tree Representat

10N

IR

Register Transfer Language (RTL)

IR

Microprocessor Architecture and SystemSoftware Laboratory

RTL Generation

= Convert parse tree into RTL /nsn list based on
named instruction patterns

= How?

= Tree has pre-defined standard pattern names
= €.¢. “addsi3”, “movsi” and etc.

=« Example of standard pattern name

“addsi3” : which means “add gpZ2 and op1, and storing
result in op0, where all operands have SImode”

= For each standard pattern name, generate RTL
/nsn list defined in machine.md

Microprocessor Architecture and SystemSoftware Laboratory

RTL Generation Example 1

= Machine description : define _insn

Name
[(set (match_op€erand:S1 0 "arith_reg_operand" "=r'") I

(plus:S1 (plus:SI (match_operand:Si
1 "arith_reg_operand™ "0™)

(match_operand:Sl

2 "arith_reg_operand™ ''r')) > RTL Template
(reg:SlI 18)))
(set (reg:Sl1 18)
(1tu:S1 (plus:SI (match_dup 1) (match_dup 2))

(match_dup 1)))] _J
e Condittion (optional)
“ADC\\ %0, %2"* Output Template

Attributes

Microprocessor Architecture and SystemSoftware Laboratory

* RTL Generation Example 1a

s Standard name In Tree

In addsi3.c

inti;
int

main()
{

Lisits === | addsi3; r57 € 156 + 1
} _

Microprocessor Architecture and SystemSoftware Laboratory

:h RTL Generation Example 1b

= Find RTL pattern by name defined in .md

In machine.md

(define_insn "addsi3"
[(set (match_operand:SI1 O
"arith_reg operand” "=r,r")
(plus:S1 (match_operand:SlI 1
"arith_operand™ "%0,0'")
(match_operand:SI 2
"arith_operand” "'r,1)))

(clobber (reg:SlI 18))]

In Insn-emit.c

rtx
gen_addsi3 (operandO, operandl, operand2)

rtx operandO; rtx operandl; rtx operand2;

return gen_rtx PARALLEL (VOIDmode,
gen_rtvec (2,
gen_rtx_SET (VOIDmode, operandO,
gen_rtx PLUS (SImode, operandl, operand2)),
gen_rtx_CLOBBER (VOIDmode,
gen_rtx REG (SImode,

18)))):
}

Microprocessor Architecture and SystemSoftware Laboratory

* RTL Generation Example 1c

s Generate RTL from Tree

In addsi3.c.rtl

addsi3 ; 157 €< 56 + 1

Microprocessor Architecture and SystemSoftware Laboratory

RTL Generation Example 2

= Machine description : define_expand

Name
[(set (match_operand:SI 0 "register_operand™ ™"))
(and:SI1 (subreg:Sl
(match_operand:Hl 1 "register_operand™ ") >> RTL Template
0)
(match_dup 2)))]

_ o -
Condition (optional)

""operands[2]=force_reg(SImode,GEN_INT(65535));") Preparation

statement

Microprocessor Architecture and SystemSoftware Laboratory

RTL Generation Example 2a

= We can generate RTL sequences from standard
name while generating RTL patterns.
= by using “define_expand’ instead of “define insm’

After RTL generation

Before RTL generation

Microprocessor Architecture and SystemSoftware Laboratory

RTL Generation Example 3

= Machine description : define_split

[(set(match_operand:Dl O "arith_reg_operand" "=r'")
(plus:DI(match_operand:DlI 1 "arith_reg_operand™ "%0') .~ insn pattern
(match_operand:DI 2 "arith_reg_operand” "r")))

(clobber (reg:Sl1 18))]

_
Condition

new insn patterns

preparation
statements

=
(]
e

Microprocessor Architecture and SystemSoftware Laboratory

* RTL Generation Example 3a

= We can also split generated insn pattern into new
Insn patterns.
= by using “define split' instead of “define insmn’

In adddi3.c While RTL generation After splitting standard name

addsi3 ;
addc ;

Microprocessor Architecture and SystemSoftware Laboratory

adddi3 ; let’s spllt

'=|+1

Name, RTL pattern and Assembler code

= There can be only one name(standard or not) for one
unique RTL pattern. But one name can have multiple
RTL patterns.

(Name 8| —[RTLPaEESFN 4l |, optimizations
Register
Parse Transfer __. Assembler

(RTL)

Microprocessor Architecture and SystemSoftware Laboratory

Assember Code
With or w/o

debugging information

H

Assembler Code
Generation

-

RTL Optimization

A

-

RTL Generation

A

’/

Tree Optimization

:h GCC Compiler flow

For each function

Tree Representat

10N

IR

Register Transfer Language (RTL)

IR

Microprocessor Architecture and SystemSoftware Laboratory

Assembly code Generation
Example la

= Let’s think previous example

After splitting standard name

In adddi3.c

(and just before Assembly code generation)

'_'+1 addc;rlér1+r3

Microprocessor Architecture and SystemSoftware Laboratory

Assembly code Generation
Example 1b

= FIind asm output by RTL pattern matching

In machine.md In Insn-output.c

[(set (match_operand:S1 O "arith_reg_operand™ "=r')

(plus:S1 (plus:SI (match_operand:Sl
1 "arith_reg_operand™ "0")

""ADC\t%0,%2",

(match_operand:Sl
2 "arith_reg_operand” ''r'"))

(reg:Sli 18)))
(set (reg:Sl1 18)

(1tu:SI (plus:S1 (match_dup 1) (match_dup 2))
(match_dup 1)))]

"ADC\\t%0, %2""

Microprocessor Architecture and SystemSoftware Laboratory

Assembly code Generation
Example 1c

= FIind asm output by RTL pattern matching

After splitting standard name In adddi3.s

(and just before Assembler code generation)

addc ; ri < rl + r3 ADC ri,

Microprocessor Architecture and SystemSoftware Laboratory

Assember Code
With or w/o

debugging information

H

Assembler Code
Generation

-

RTL Optimization

A

-

RTL Generation

A

’/

Tree Optimization

:h GCC Compiler flow

For each function

Tree Representat

10N

IR

Register Transfer Language (RTL)

IR

Microprocessor Architecture and SystemSoftware Laboratory

Optimization and RTL

* Example la

s Let’'s think about two different RTL for
one standard name

(clobber (reg:Sl1 18))]

Microprocessor Architecture and SystemSoftware Laboratory

Optimization and RTL

* Example 1b

= For same example as before

Before optimization In RTL form

addsi3
addc

(clobber (reg:Sl1 18))] < Define register 18

< Use register 18

Microprocessor Architecture and SystemSoftware Laboratory

Optimization and RTL

* Example 1b

= For same example as before

After iInstruction scheduling After instruction scheduling
Without (clobber 18 t) With (clobber 18 t)

addc !

addsi3 $

Microprocessor Architecture and SystemSoftware Laboratory

Optimization and attributes 2a

= You can introduce attributes by using “define_attr”

= You can assign multiple attributes for each RTL pattern
In machine.md
(define_attr ""needs_delay_slot” "yes,no"™ (const_string ""'no™))
(define_attr "in_delay_slot” "yes,no*
(cond [(eqg_attr "type" “arith'™) (const_string ""no)])

(const_string “no’))

[(set_attr "type'" "return'™) [(set_attr “type" “arith™)])

(set_attr ""needs_delay_slot" "yes'™)])

Microprocessor Architecture and SystemSoftware Laboratory

Optimizatioxs

In machine.md
(define_attr "'needs_delay_slot"” "yes,no"™ (co
(define_attr "in_delay_slot” "yes,no**

W) (const_string ""no™)])

(cond [(eg_attr "type'™ “arit

(const_string “no’))

[(set_attr "type'"™ "return'™)

set_attr “type' “arith™)}

Microprocessor Architecture and SystemSoftware Laboratory

(set_attr ""needs_delay_slot" "yes'™)])

Optimization and attributes 2c

= Finally you can specify delay slot scheduling policy
by “define_delay”

= e.g. “addc” can not be in delay slot of “return”

In machine.md

(define_delay

(eq_attr ''needs_delay slot™ 'yes™)

[(eq_attr "in_delay_slot™ "yes™) (nil) (nil)])
(define_delay

(eqg_attr type"™ "return’™)
-)

Microprocessor Architecture and SystemSoftware Laboratory

Porting GCC Compiler

!'_ Part 111 : Other things

Chol, Hyung-Kyu

hectoct@altair.snu.ac.kr

July 17, 2003

Microprocessor Architecture and System Software Laboratory

Not explained here la

= When generate RTL from Tree

= Find RTL template by name?

= NO, also check machine mode and predicate for
operand

= How and where should we define predicate?

Microprocessor Architecture and SystemSoftware Laboratory

Not explained here 1b

= Predicate I1s C function with 2
arguments defined in machine.c

In machine.c

Microprocessor Architecture and SystemSoftware Laboratory

Not explained here 1c

= What happen, if there is no matching RTL

template?

= Automatically convert operand’s machine mode by
generating “mov s’ pattern to generate RTL

= If fails, just abort!

= e.g. If “addsi3” accepts only register and immediate

operands

inti;

int

main()

Genearated
automatically by

movsi ; r56 € mem(r55)

Microprocessor Architecture and SystemSoftware Laboratory

:h Not explained here 2

= In this presentation, only flow of GCC
Compiler is explained.

= No implementation detall
= RTL syntax
= Target Macros in machine.h
= Machine descriptions in machine.md
= elc

Microprocessor Architecture and SystemSoftware Laboratory

Limitation of GCC

= When new architecture feature is
Introduced, we can’t porting by this

method explained before.

= You should modify core part of GCC Compiler.

= e.g. There was no support for “register
window”, “delay slot” in old version.

= e.g. There was no support for 1lbit-register
before, such as predicate register in Itanium

= You don’'t have to consider optimization

every time. But sometimes you should
consider!

Microprocessor Architecture and SystemSoftware Laboratory

* Summary

~—~ machine.md

machine.b
N_—"

=\

DBX, SDB, DWARF, DWARF2, VMS are supported

Microprocessor Architecture and SystemSoftware Laboratory

machine.c

References

» GCC Internals Manual

» http://gcc.gnu.org/onlinedocs/
« Especially Ch.7 —~ Ch.11

= GCC home page
» http://gcc.gnu.org
= crossgcc (mailing list)
= archives : http://sources.redhat.com/ml/crossgcc/

Microprocessor Architecture and SystemSoftware Laboratory

