Index: gcc/testsuite/gcc.dg/tree-ssa/loop-bound-3.c =================================================================== --- gcc/testsuite/gcc.dg/tree-ssa/loop-bound-3.c (revision 0) +++ gcc/testsuite/gcc.dg/tree-ssa/loop-bound-3.c (revision 0) @@ -0,0 +1,22 @@ +/* { dg-do compile } */ +/* { dg-options "-O2 -fdump-tree-ivopts-details" } */ + +int *a; + +int +foo (unsigned char s, unsigned char l) +{ + unsigned char i; + int sum = 0; + + for (i = s; i > l; i -= 1) + { + sum += a[i]; + } + + return sum; +} + +/* Check loop niter bound information. */ +/* { dg-final { scan-tree-dump "bounded by 254" "ivopts" } } */ +/* { dg-final { scan-tree-dump-not "bounded by 255" "ivopts" } } */ Index: gcc/testsuite/gcc.dg/tree-ssa/loop-bound-5.c =================================================================== --- gcc/testsuite/gcc.dg/tree-ssa/loop-bound-5.c (revision 0) +++ gcc/testsuite/gcc.dg/tree-ssa/loop-bound-5.c (revision 0) @@ -0,0 +1,22 @@ +/* { dg-do compile } */ +/* { dg-options "-O2 -fdump-tree-ivopts-details" } */ + +int *a; + +int +foo (unsigned char s) +{ + unsigned char i; + int sum = 0; + + for (i = s; i > 0; i -= 1) + { + sum += a[i]; + } + + return sum; +} + +/* Check loop niter bound information. */ +/* { dg-final { scan-tree-dump "bounded by 254" "ivopts" } } */ +/* { dg-final { scan-tree-dump-not "bounded by 255" "ivopts" } } */ Index: gcc/testsuite/gcc.dg/tree-ssa/loop-bound-1.c =================================================================== --- gcc/testsuite/gcc.dg/tree-ssa/loop-bound-1.c (revision 0) +++ gcc/testsuite/gcc.dg/tree-ssa/loop-bound-1.c (revision 0) @@ -0,0 +1,22 @@ +/* { dg-do compile } */ +/* { dg-options "-O2 -fdump-tree-ivopts-details" } */ + +int *a; + +int +foo (unsigned char s, unsigned char l) +{ + unsigned char i; + int sum = 0; + + for (i = s; i < l; i += 1) + { + sum += a[i]; + } + + return sum; +} + +/* Check loop niter bound information. */ +/* { dg-final { scan-tree-dump "bounded by 254" "ivopts" } } */ +/* { dg-final { scan-tree-dump-not "bounded by 255" "ivopts" } } */ Index: gcc/tree-ssa-loop-niter.c =================================================================== --- gcc/tree-ssa-loop-niter.c (revision 225859) +++ gcc/tree-ssa-loop-niter.c (working copy) @@ -122,6 +122,233 @@ split_to_var_and_offset (tree expr, tree *var, mpz } } +/* From condition C0 CMP C1 derives information regarding the value range + of VAR, which is of TYPE. Results are stored in to BELOW and UP. */ + +static void +refine_value_range_using_guard (tree type, tree var, + tree c0, enum tree_code cmp, tree c1, + mpz_t below, mpz_t up) +{ + tree varc0, varc1, ctype; + mpz_t offc0, offc1; + mpz_t mint, maxt, minc1, maxc1; + wide_int minv, maxv; + bool no_wrap = nowrap_type_p (type); + bool c0_ok, c1_ok; + signop sgn = TYPE_SIGN (type); + + switch (cmp) + { + case LT_EXPR: + case LE_EXPR: + case GT_EXPR: + case GE_EXPR: + STRIP_SIGN_NOPS (c0); + STRIP_SIGN_NOPS (c1); + ctype = TREE_TYPE (c0); + if (!useless_type_conversion_p (ctype, type)) + return; + + break; + + case EQ_EXPR: + /* We could derive quite precise information from EQ_EXPR, however, + such a guard is unlikely to appear, so we do not bother with + handling it. */ + return; + + case NE_EXPR: + /* NE_EXPR comparisons do not contain much of useful information, + except for cases of comparing with bounds. */ + if (TREE_CODE (c1) != INTEGER_CST + || !INTEGRAL_TYPE_P (type)) + return; + + /* Ensure that the condition speaks about an expression in the same + type as X and Y. */ + ctype = TREE_TYPE (c0); + if (TYPE_PRECISION (ctype) != TYPE_PRECISION (type)) + return; + c0 = fold_convert (type, c0); + c1 = fold_convert (type, c1); + + if (operand_equal_p (var, c0, 0)) + { + mpz_t valc1; + + /* Case of comparing VAR with its below/up bounds. */ + mpz_init (valc1); + wi::to_mpz (c1, valc1, TYPE_SIGN (type)); + if (mpz_cmp (valc1, below) == 0) + cmp = GT_EXPR; + if (mpz_cmp (valc1, up) == 0) + cmp = LT_EXPR; + + mpz_clear (valc1); + } + else + { + /* Case of comparing with the bounds of the type. */ + if (TYPE_MIN_VALUE (type) + && operand_equal_p (c1, TYPE_MIN_VALUE (type), 0)) + cmp = GT_EXPR; + if (TYPE_MAX_VALUE (type) + && operand_equal_p (c1, TYPE_MAX_VALUE (type), 0)) + cmp = LT_EXPR; + } + + /* Quick return if no useful information. */ + if (cmp == NE_EXPR) + return; + + break; + + default: + return; + } + + mpz_init (offc0); + mpz_init (offc1); + split_to_var_and_offset (expand_simple_operations (c0), &varc0, offc0); + split_to_var_and_offset (expand_simple_operations (c1), &varc1, offc1); + + /* We are only interested in comparisons of expressions based on VAR. */ + if (operand_equal_p (var, varc1, 0)) + { + std::swap (varc0, varc1); + mpz_swap (offc0, offc1); + cmp = swap_tree_comparison (cmp); + } + else if (!operand_equal_p (var, varc0, 0)) + goto end_2; + + mpz_init (mint); + mpz_init (maxt); + get_type_static_bounds (type, mint, maxt); + mpz_init (minc1); + mpz_init (maxc1); + /* Setup range information for varc1. */ + if (integer_zerop (varc1)) + { + wi::to_mpz (integer_zero_node, minc1, TYPE_SIGN (type)); + wi::to_mpz (integer_zero_node, maxc1, TYPE_SIGN (type)); + } + else if (TREE_CODE (varc1) == SSA_NAME + && INTEGRAL_TYPE_P (type) + && get_range_info (varc1, &minv, &maxv) == VR_RANGE) + { + gcc_assert (wi::le_p (minv, maxv, sgn)); + wi::to_mpz (minv, minc1, sgn); + wi::to_mpz (maxv, maxc1, sgn); + } + else + { + mpz_set (minc1, mint); + mpz_set (maxc1, maxt); + } + + /* Compute valid range information for varc1 + offc1. Note nothing + useful can be derived if it overflows or underflows. Overflow or + underflow could happen when: + + offc1 > 0 && varc1 + offc1 > MAX_VAL (type) + offc1 < 0 && varc1 + offc1 < MIN_VAL (type). */ + mpz_add (minc1, minc1, offc1); + mpz_add (maxc1, maxc1, offc1); + c1_ok = (no_wrap + || mpz_sgn (offc1) == 0 + || (mpz_sgn (offc1) < 0 && mpz_cmp (minc1, mint) >= 0) + || (mpz_sgn (offc1) > 0 && mpz_cmp (maxc1, maxt) <= 0)); + if (!c1_ok) + goto end_1; + + if (mpz_cmp (minc1, mint) < 0) + mpz_set (minc1, mint); + if (mpz_cmp (maxc1, maxt) > 0) + mpz_set (maxc1, maxt); + + if (cmp == LT_EXPR) + { + cmp = LE_EXPR; + mpz_sub_ui (maxc1, maxc1, 1); + } + if (cmp == GT_EXPR) + { + cmp = GE_EXPR; + mpz_add_ui (minc1, minc1, 1); + } + + /* Compute range information for varc0. If there is no overflow, + the condition implied that + + (varc0) cmp (varc1 + offc1 - offc0) + + We can possibly improve the upper bound of varc0 if cmp is LE_EXPR, + or the below bound if cmp is GE_EXPR. + + To prove there is no overflow/underflow, we need to check below + four cases: + 1) cmp == LE_EXPR && offc0 > 0 + + (varc0 + offc0) doesn't overflow + && (varc1 + offc1 - offc0) doesn't underflow + + 2) cmp == LE_EXPR && offc0 < 0 + + (varc0 + offc0) doesn't underflow + && (varc1 + offc1 - offc0) doesn't overfloe + + In this case, (varc0 + offc0) will never underflow if we can + prove (varc1 + offc1 - offc0) doesn't overflow. + + 3) cmp == GE_EXPR && offc0 < 0 + + (varc0 + offc0) doesn't underflow + && (varc1 + offc1 - offc0) doesn't overflow + + 4) cmp == GE_EXPR && offc0 > 0 + + (varc0 + offc0) doesn't overflow + && (varc1 + offc1 - offc0) doesn't underflow + + In this case, (varc0 + offc0) will never overflow if we can + prove (varc1 + offc1 - offc0) doesn't underflow. + + Note we only handle case 2 and 4 in below code. */ + + mpz_sub (minc1, minc1, offc0); + mpz_sub (maxc1, maxc1, offc0); + c0_ok = (no_wrap + || mpz_sgn (offc0) == 0 + || (cmp == LE_EXPR + && mpz_sgn (offc0) < 0 && mpz_cmp (maxc1, maxt) <= 0) + || (cmp == GE_EXPR + && mpz_sgn (offc0) > 0 && mpz_cmp (minc1, mint) >= 0)); + if (!c0_ok) + goto end_1; + + if (cmp == LE_EXPR) + { + if (mpz_cmp (up, maxc1) > 0) + mpz_set (up, maxc1); + } + else + { + if (mpz_cmp (below, minc1) < 0) + mpz_set (below, minc1); + } + +end_1: + mpz_clear (mint); + mpz_clear (maxt); + mpz_clear (minc1); + mpz_clear (maxc1); +end_2: + mpz_clear (offc0); + mpz_clear (offc1); +} + /* Stores estimate on the minimum/maximum value of the expression VAR + OFF in TYPE to MIN and MAX. */ @@ -129,6 +356,9 @@ static void determine_value_range (struct loop *loop, tree type, tree var, mpz_t off, mpz_t min, mpz_t max) { + int cnt = 0; + mpz_t minm, maxm; + basic_block bb; wide_int minv, maxv; enum value_range_type rtype = VR_VARYING; @@ -183,35 +413,69 @@ determine_value_range (struct loop *loop, tree typ } } } - if (rtype == VR_RANGE) + mpz_init (minm); + mpz_init (maxm); + if (rtype != VR_RANGE) { - mpz_t minm, maxm; + mpz_set (minm, min); + mpz_set (maxm, max); + } + else + { gcc_assert (wi::le_p (minv, maxv, sgn)); - mpz_init (minm); - mpz_init (maxm); wi::to_mpz (minv, minm, sgn); wi::to_mpz (maxv, maxm, sgn); - mpz_add (minm, minm, off); - mpz_add (maxm, maxm, off); - /* If the computation may not wrap or off is zero, then this - is always fine. If off is negative and minv + off isn't - smaller than type's minimum, or off is positive and - maxv + off isn't bigger than type's maximum, use the more - precise range too. */ - if (nowrap_type_p (type) - || mpz_sgn (off) == 0 - || (mpz_sgn (off) < 0 && mpz_cmp (minm, min) >= 0) - || (mpz_sgn (off) > 0 && mpz_cmp (maxm, max) <= 0)) - { - mpz_set (min, minm); - mpz_set (max, maxm); - mpz_clear (minm); - mpz_clear (maxm); - return; - } + } + /* Now walk the dominators of the loop header and use the entry + guards to refine the estimates. */ + for (bb = loop->header; + bb != ENTRY_BLOCK_PTR_FOR_FN (cfun) && cnt < MAX_DOMINATORS_TO_WALK; + bb = get_immediate_dominator (CDI_DOMINATORS, bb)) + { + edge e; + tree c0, c1; + gimple cond; + enum tree_code cmp; + + if (!single_pred_p (bb)) + continue; + e = single_pred_edge (bb); + + if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))) + continue; + + cond = last_stmt (e->src); + c0 = gimple_cond_lhs (cond); + cmp = gimple_cond_code (cond); + c1 = gimple_cond_rhs (cond); + + if (e->flags & EDGE_FALSE_VALUE) + cmp = invert_tree_comparison (cmp, false); + + refine_value_range_using_guard (type, var, c0, cmp, c1, minm, maxm); + ++cnt; + } + + mpz_add (minm, minm, off); + mpz_add (maxm, maxm, off); + /* If the computation may not wrap or off is zero, then this + is always fine. If off is negative and minv + off isn't + smaller than type's minimum, or off is positive and + maxv + off isn't bigger than type's maximum, use the more + precise range too. */ + if (nowrap_type_p (type) + || mpz_sgn (off) == 0 + || (mpz_sgn (off) < 0 && mpz_cmp (minm, min) >= 0) + || (mpz_sgn (off) > 0 && mpz_cmp (maxm, max) <= 0)) + { + mpz_set (min, minm); + mpz_set (max, maxm); mpz_clear (minm); mpz_clear (maxm); + return; } + mpz_clear (minm); + mpz_clear (maxm); } /* If the computation may wrap, we know nothing about the value, except for