commit bde348ad056b57f97d581205e75d083b17a8d69c Author: Sandra Loosemore Date: Thu Dec 17 08:13:00 2020 -0800 Fortran: delinearize multi-dimensional array accesses The Fortran front end presently linearizes accesses to multi-dimensional arrays by combining the indices for the various dimensions into a series of explicit multiplies and adds with refactoring to allow CSE of invariant parts of the computation. Unfortunately this representation interferes with Graphite-based loop optimizations. It is difficult to recover the original multi-dimensional form of the access by the time loop optimizations run because parts of it have already been optimized away or into a form that is not easily recognizable, so it seems better to have the Fortran front end produce delinearized accesses to begin with, a set of nested ARRAY_REFs similar to the existing behavior of the C and C++ front ends. This is a long-standing problem that has previously been discussed e.g. in PR 14741 and PR61000. This patch is an initial implementation for explicit array accesses only; it doesn't handle the accesses generated during scalarization of whole-array or array-section operations, which follow a different code path. 2020-12-17 Sandra Loosemore Tobias Burnus gcc/ * expr.c (get_inner_reference): Handle NOP_EXPR like VIEW_CONVERT_EXPR. gcc/fortran/ * lang.opt (-param=delinearize=): New. * trans-array.c (get_class_array_vptr): New, split from... (build_array_ref): ...here. (get_array_lbound, get_array_ubound): New, split from... (gfc_conv_array_ref): ...here. Additional code refactoring plus support for delinearization of the array access. gcc/testsuite/ * gfortran.dg/assumed_type_2.f90: Adjust patterns. * gfortran.dg/graphite/block-3.f90: Remove xfails. * gfortran.dg/graphite/block-4.f90: Likewise. * gfortran.dg/inline_matmul_24.f90: Adjust patterns. * gfortran.dg/no_arg_check_2.f90: Likewise. * gfortran.dg/pr32921.f: Likewise. * gfortran.dg/reassoc_4.f: Disable delinearization for this test. diff --git a/gcc/expr.c b/gcc/expr.c index b2aa23e..c450ce7 100644 --- a/gcc/expr.c +++ b/gcc/expr.c @@ -7383,6 +7383,7 @@ get_inner_reference (tree exp, poly_int64_pod *pbitsize, break; case VIEW_CONVERT_EXPR: + case NOP_EXPR: break; case MEM_REF: diff --git a/gcc/fortran/lang.opt b/gcc/fortran/lang.opt index f37242c..fb0e72d 100644 --- a/gcc/fortran/lang.opt +++ b/gcc/fortran/lang.opt @@ -513,6 +513,10 @@ fdefault-real-16 Fortran Var(flag_default_real_16) Set the default real kind to an 16 byte wide type. +-param=delinearize= +Common Joined UInteger Var(flag_delinearize_aref) Init(1) IntegerRange(0,1) Param Optimization +Delinearize array references. + fdollar-ok Fortran Var(flag_dollar_ok) Allow dollar signs in entity names. diff --git a/gcc/fortran/trans-array.c b/gcc/fortran/trans-array.c index a3b3ac9..54773c0 100644 --- a/gcc/fortran/trans-array.c +++ b/gcc/fortran/trans-array.c @@ -3557,11 +3557,9 @@ add_to_offset (tree *cst_offset, tree *offset, tree t) } } - static tree -build_array_ref (tree desc, tree offset, tree decl, tree vptr) +get_class_array_vptr (tree desc, tree vptr) { - tree tmp; tree type; tree cdesc; @@ -3585,19 +3583,74 @@ build_array_ref (tree desc, tree offset, tree decl, tree vptr) && GFC_CLASS_TYPE_P (TYPE_CANONICAL (type))) vptr = gfc_class_vptr_get (TREE_OPERAND (cdesc, 0)); } + return vptr; +} +static tree +build_array_ref (tree desc, tree offset, tree decl, tree vptr) +{ + tree tmp; + vptr = get_class_array_vptr (desc, vptr); tmp = gfc_conv_array_data (desc); tmp = build_fold_indirect_ref_loc (input_location, tmp); tmp = gfc_build_array_ref (tmp, offset, decl, vptr); return tmp; } +/* Get the declared lower bound for rank N of array DECL which might + be either a bare array or a descriptor. This differs from + gfc_conv_array_lbound because it gets information for temporary array + objects from AR instead of the descriptor (they can differ). */ + +static tree +get_array_lbound (tree decl, int n, gfc_symbol *sym, + gfc_array_ref *ar, gfc_se *se) +{ + if (sym->attr.temporary) + { + gfc_se tmpse; + gfc_init_se (&tmpse, se); + gfc_conv_expr_type (&tmpse, ar->as->lower[n], gfc_array_index_type); + gfc_add_block_to_block (&se->pre, &tmpse.pre); + return tmpse.expr; + } + else + return gfc_conv_array_lbound (decl, n); +} + +/* Similarly for the upper bound. */ +static tree +get_array_ubound (tree decl, int n, gfc_symbol *sym, + gfc_array_ref *ar, gfc_se *se) +{ + if (sym->attr.temporary) + { + gfc_se tmpse; + gfc_init_se (&tmpse, se); + gfc_conv_expr_type (&tmpse, ar->as->upper[n], gfc_array_index_type); + gfc_add_block_to_block (&se->pre, &tmpse.pre); + return tmpse.expr; + } + else + return gfc_conv_array_ubound (decl, n); +} + /* Build an array reference. se->expr already holds the array descriptor. This should be either a variable, indirect variable reference or component reference. For arrays which do not have a descriptor, se->expr will be the data pointer. - a(i, j, k) = base[offset + i * stride[0] + j * stride[1] + k * stride[2]]*/ + + There are two strategies here. In the traditional case, multidimensional + arrays are explicitly linearized into a one-dimensional array, with the + index computed as if by + a(i, j, k) = base[offset + i * stride[0] + j * stride[1] + k * stride[2]] + + However, we can often get better code using the Graphite framework + and scalar evolutions in the middle end, which expects to see + multidimensional array accesses represented as nested ARRAY_REFs, similar + to what the C/C++ front ends produce. Delinearization is controlled + by flag_delinearize_aref. */ void gfc_conv_array_ref (gfc_se * se, gfc_array_ref * ar, gfc_expr *expr, @@ -3608,11 +3661,15 @@ gfc_conv_array_ref (gfc_se * se, gfc_array_ref * ar, gfc_expr *expr, tree tmp; tree stride; tree decl = NULL_TREE; + tree cooked_decl = NULL_TREE; + tree vptr = se->class_vptr; gfc_se indexse; - gfc_se tmpse; gfc_symbol * sym = expr->symtree->n.sym; char *var_name = NULL; + tree aref = NULL_TREE; + tree atype = NULL_TREE; + /* Handle coarrays. */ if (ar->dimen == 0) { gcc_assert (ar->codimen || sym->attr.select_rank_temporary @@ -3672,11 +3729,147 @@ gfc_conv_array_ref (gfc_se * se, gfc_array_ref * ar, gfc_expr *expr, } } - cst_offset = offset = gfc_index_zero_node; - add_to_offset (&cst_offset, &offset, gfc_conv_array_offset (se->expr)); + /* Per comments above, DECL is not always a declaration. It may be + either a variable, indirect variable reference, or component + reference. It may have array or pointer type, or it may be a + descriptor with RECORD_TYPE. */ + decl = se->expr; + + /* A pointer array component can be detected from its field decl. Fix + the descriptor, mark the resulting variable decl and store it in + COOKED_DECL to pass to gfc_build_array_ref. */ + if (get_CFI_desc (sym, expr, &cooked_decl, ar)) + cooked_decl = build_fold_indirect_ref_loc (input_location, cooked_decl); + if (!expr->ts.deferred && !sym->attr.codimension + && is_pointer_array (se->expr)) + { + if (TREE_CODE (se->expr) == COMPONENT_REF) + cooked_decl = se->expr; + else if (TREE_CODE (se->expr) == INDIRECT_REF) + cooked_decl = TREE_OPERAND (se->expr, 0); + else + cooked_decl = se->expr; + } + else if (expr->ts.deferred + || (sym->ts.type == BT_CHARACTER + && sym->attr.select_type_temporary)) + { + if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (se->expr))) + { + cooked_decl = se->expr; + if (TREE_CODE (cooked_decl) == INDIRECT_REF) + cooked_decl = TREE_OPERAND (cooked_decl, 0); + } + else + cooked_decl = sym->backend_decl; + } + else if (sym->ts.type == BT_CLASS) + { + cooked_decl = NULL_TREE; + } + + /* Find the base of the array; this normally has ARRAY_TYPE. */ + tree base = build_fold_indirect_ref_loc (input_location, + gfc_conv_array_data (se->expr)); + tree type = TREE_TYPE (base); + + /* Handle special cases, copied from gfc_build_array_ref. After we get + through this, we know TYPE definitely is an ARRAY_TYPE. */ + if (GFC_ARRAY_TYPE_P (type) && GFC_TYPE_ARRAY_RANK (type) == 0) + { + gcc_assert (GFC_TYPE_ARRAY_CORANK (type) > 0); + se->expr = fold_convert (TYPE_MAIN_VARIANT (type), base); + return; + } + if (TREE_CODE (type) != ARRAY_TYPE) + { + gcc_assert (cooked_decl == NULL_TREE); + se->expr = base; + return; + } - /* Calculate the offsets from all the dimensions. Make sure to associate - the final offset so that we form a chain of loop invariant summands. */ + /* Check for cases where we cannot delinearize. */ + + bool delinearize = flag_delinearize_aref; + + /* There is no point in trying to delinearize 1-dimensional arrays. */ + if (ar->dimen == 1) + delinearize = false; + + if (delinearize + && (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (se->expr)) + || (DECL_P (se->expr) + && DECL_LANG_SPECIFIC (se->expr) + && GFC_DECL_SAVED_DESCRIPTOR (se->expr)))) + { + /* Descriptor arrays that may not be contiguous cannot + be delinearized without using the stride in the descriptor, + which generally involves introducing a division operation. + That's unlikely to produce optimal code, so avoid doing it. */ + tree desc = se->expr; + if (!GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (se->expr))) + desc = GFC_DECL_SAVED_DESCRIPTOR (se->expr); + tree tmptype = TREE_TYPE (desc); + if (POINTER_TYPE_P (tmptype)) + tmptype = TREE_TYPE (tmptype); + enum gfc_array_kind akind = GFC_TYPE_ARRAY_AKIND (tmptype); + if (akind != GFC_ARRAY_ASSUMED_SHAPE_CONT + && akind != GFC_ARRAY_ASSUMED_RANK_CONT + && akind != GFC_ARRAY_ALLOCATABLE + && akind != GFC_ARRAY_POINTER_CONT) + delinearize = false; + } + + /* See gfc_build_array_ref in trans.c. If we have a cooked_decl or + vptr, then we most likely have to do pointer arithmetic using a + linearized array offset. */ + if (delinearize && cooked_decl) + delinearize = false; + else if (delinearize && get_class_array_vptr (se->expr, vptr)) + delinearize = false; + + if (!delinearize) + { + /* Initialize the offset from the array descriptor. This accounts + for the array base being something other than zero. */ + cst_offset = offset = gfc_index_zero_node; + add_to_offset (&cst_offset, &offset, gfc_conv_array_offset (decl)); + } + else + { + /* If we are delinearizing, build up the nested array type using the + dimension information we have for each rank. */ + atype = TREE_TYPE (type); + for (n = 0; n < ar->dimen; n++) + { + /* We're working from the outermost nested array reference inward + in this step. ATYPE is the element type for the access in + this rank; build the new array type based on the bounds + information and store it back into ATYPE for the next rank's + processing. */ + tree lbound = get_array_lbound (decl, n, sym, ar, se); + tree ubound = get_array_ubound (decl, n, sym, ar, se); + tree dimen = build_range_type (TREE_TYPE (lbound), + lbound, ubound); + atype = build_array_type (atype, dimen); + + /* Emit a DECL_EXPR for the array type so the gimplification of + its type sizes works correctly. */ + if (! TYPE_NAME (atype)) + TYPE_NAME (atype) = build_decl (UNKNOWN_LOCATION, TYPE_DECL, + NULL_TREE, atype); + gfc_add_expr_to_block (&se->pre, + build1 (DECL_EXPR, atype, + TYPE_NAME (atype))); + } + + /* Cast base to the innermost array type. */ + if (DECL_P (base)) + TREE_ADDRESSABLE (base) = 1; + aref = build1 (NOP_EXPR, atype, base); + } + + /* Process indices in reverse order. */ for (n = ar->dimen - 1; n >= 0; n--) { /* Calculate the index for this dimension. */ @@ -3694,16 +3887,7 @@ gfc_conv_array_ref (gfc_se * se, gfc_array_ref * ar, gfc_expr *expr, indexse.expr = save_expr (indexse.expr); /* Lower bound. */ - tmp = gfc_conv_array_lbound (se->expr, n); - if (sym->attr.temporary) - { - gfc_init_se (&tmpse, se); - gfc_conv_expr_type (&tmpse, ar->as->lower[n], - gfc_array_index_type); - gfc_add_block_to_block (&se->pre, &tmpse.pre); - tmp = tmpse.expr; - } - + tmp = get_array_lbound (decl, n, sym, ar, se); cond = fold_build2_loc (input_location, LT_EXPR, logical_type_node, indexse.expr, tmp); msg = xasprintf ("Index '%%ld' of dimension %d of array '%s' " @@ -3718,16 +3902,7 @@ gfc_conv_array_ref (gfc_se * se, gfc_array_ref * ar, gfc_expr *expr, arrays. */ if (n < ar->dimen - 1 || ar->as->type != AS_ASSUMED_SIZE) { - tmp = gfc_conv_array_ubound (se->expr, n); - if (sym->attr.temporary) - { - gfc_init_se (&tmpse, se); - gfc_conv_expr_type (&tmpse, ar->as->upper[n], - gfc_array_index_type); - gfc_add_block_to_block (&se->pre, &tmpse.pre); - tmp = tmpse.expr; - } - + tmp = get_array_ubound (decl, n, sym, ar, se); cond = fold_build2_loc (input_location, GT_EXPR, logical_type_node, indexse.expr, tmp); msg = xasprintf ("Index '%%ld' of dimension %d of array '%s' " @@ -3740,51 +3915,41 @@ gfc_conv_array_ref (gfc_se * se, gfc_array_ref * ar, gfc_expr *expr, } } - /* Multiply the index by the stride. */ - stride = gfc_conv_array_stride (se->expr, n); - tmp = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type, - indexse.expr, stride); - - /* And add it to the total. */ - add_to_offset (&cst_offset, &offset, tmp); - } - - if (!integer_zerop (cst_offset)) - offset = fold_build2_loc (input_location, PLUS_EXPR, - gfc_array_index_type, offset, cst_offset); + if (!delinearize) + { + /* Multiply the index by the stride. */ + stride = gfc_conv_array_stride (decl, n); + tmp = fold_build2_loc (input_location, MULT_EXPR, + gfc_array_index_type, + indexse.expr, stride); - /* A pointer array component can be detected from its field decl. Fix - the descriptor, mark the resulting variable decl and pass it to - build_array_ref. */ - if (get_CFI_desc (sym, expr, &decl, ar)) - decl = build_fold_indirect_ref_loc (input_location, decl); - if (!expr->ts.deferred && !sym->attr.codimension - && is_pointer_array (se->expr)) - { - if (TREE_CODE (se->expr) == COMPONENT_REF) - decl = se->expr; - else if (TREE_CODE (se->expr) == INDIRECT_REF) - decl = TREE_OPERAND (se->expr, 0); + /* And add it to the total. */ + add_to_offset (&cst_offset, &offset, tmp); + } else - decl = se->expr; - } - else if (expr->ts.deferred - || (sym->ts.type == BT_CHARACTER - && sym->attr.select_type_temporary)) - { - if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (se->expr))) { - decl = se->expr; - if (TREE_CODE (decl) == INDIRECT_REF) - decl = TREE_OPERAND (decl, 0); + /* Peel off a layer of array nesting from ATYPE to + to get the result type of the new ARRAY_REF. */ + atype = TREE_TYPE (atype); + aref = build4 (ARRAY_REF, atype, aref, indexse.expr, + NULL_TREE, NULL_TREE); } - else - decl = sym->backend_decl; } - else if (sym->ts.type == BT_CLASS) - decl = NULL_TREE; - se->expr = build_array_ref (se->expr, offset, decl, se->class_vptr); + if (!delinearize) + { + /* Build a linearized array reference using the offset from all + dimensions. */ + if (!integer_zerop (cst_offset)) + offset = fold_build2_loc (input_location, PLUS_EXPR, + gfc_array_index_type, offset, cst_offset); + se->class_vptr = vptr; + vptr = get_class_array_vptr (se->expr, vptr); + se->expr = gfc_build_array_ref (base, offset, cooked_decl, vptr); + } + else + /* Return the outermost ARRAY_REF we already built. */ + se->expr = aref; } diff --git a/gcc/testsuite/gfortran.dg/assumed_type_2.f90 b/gcc/testsuite/gfortran.dg/assumed_type_2.f90 index 5d3cd7e..07be87e 100644 --- a/gcc/testsuite/gfortran.dg/assumed_type_2.f90 +++ b/gcc/testsuite/gfortran.dg/assumed_type_2.f90 @@ -147,12 +147,12 @@ end ! { dg-final { scan-tree-dump-times "sub_scalar .&scalar_int," 1 "original" } } ! { dg-final { scan-tree-dump-times "sub_scalar .&scalar_t1," 1 "original" } } -! { dg-final { scan-tree-dump-times "sub_scalar .&array_int.1.," 1 "original" } } +! { dg-final { scan-tree-dump-times "sub_scalar .&.*array_int" 1 "original" } } ! { dg-final { scan-tree-dump-times "sub_scalar .&scalar_t1," 1 "original" } } -! { dg-final { scan-tree-dump-times "sub_scalar .&\\(.\\(real.kind=4..0:. . restrict\\) array_real_alloc.data" 1 "original" } } +! { dg-final { scan-tree-dump-times "sub_scalar .&.*real.kind=4..0.*restrict.*array_real_alloc.data" 1 "original" } } ! { dg-final { scan-tree-dump-times "sub_scalar .\\(character.kind=1..1:1. .\\) .array_char_ptr.data" 1 "original" } } -! { dg-final { scan-tree-dump-times "sub_scalar .&\\(.\\(struct t2.0:. . restrict\\) array_t2_alloc.data" 1 "original" } } +! { dg-final { scan-tree-dump-times "sub_scalar .&.*struct t2.0:..*restrict.*array_t2_alloc.data" 1 "original" } } ! { dg-final { scan-tree-dump-times "sub_scalar .\\(struct t3 .\\) .array_t3_ptr.data" 1 "original" } } ! { dg-final { scan-tree-dump-times "sub_scalar .\\(struct t1 .\\) array_class_t1_alloc._data.data" 1 "original" } } ! { dg-final { scan-tree-dump-times "sub_scalar .\\(struct t1 .\\) \\(array_class_t1_ptr._data.dat" 1 "original" } } diff --git a/gcc/testsuite/gfortran.dg/graphite/block-3.f90 b/gcc/testsuite/gfortran.dg/graphite/block-3.f90 index 452de73..60c7952 100644 --- a/gcc/testsuite/gfortran.dg/graphite/block-3.f90 +++ b/gcc/testsuite/gfortran.dg/graphite/block-3.f90 @@ -12,6 +12,5 @@ enddo end subroutine matrix_multiply -! { dg-final { scan-tree-dump-times "number of SCoPs: 1" 1 "graphite" { xfail *-*-* } } } ! { dg-final { scan-tree-dump-times "will be loop blocked" 1 "graphite" { xfail *-*-* } } } diff --git a/gcc/testsuite/gfortran.dg/graphite/block-4.f90 b/gcc/testsuite/gfortran.dg/graphite/block-4.f90 index 42af5b6..1bc7a1b 100644 --- a/gcc/testsuite/gfortran.dg/graphite/block-4.f90 +++ b/gcc/testsuite/gfortran.dg/graphite/block-4.f90 @@ -15,6 +15,5 @@ enddo end subroutine matrix_multiply -! { dg-final { scan-tree-dump-times "number of SCoPs: 1" 1 "graphite" { xfail *-*-* } } } ! { dg-final { scan-tree-dump-times "will be loop blocked" 1 "graphite" { xfail *-*-* } } } diff --git a/gcc/testsuite/gfortran.dg/inline_matmul_24.f90 b/gcc/testsuite/gfortran.dg/inline_matmul_24.f90 index 3168d5f..8d84f3c 100644 --- a/gcc/testsuite/gfortran.dg/inline_matmul_24.f90 +++ b/gcc/testsuite/gfortran.dg/inline_matmul_24.f90 @@ -39,4 +39,4 @@ program testMATMUL call abort() end if end program testMATMUL -! { dg-final { scan-tree-dump-times "gamma5\\\[__var_1_do \\* 4 \\+ __var_2_do\\\]|gamma5\\\[NON_LVALUE_EXPR <__var_1_do> \\* 4 \\+ NON_LVALUE_EXPR <__var_2_do>\\\]" 1 "original" } } +! { dg-final { scan-tree-dump-times "gamma5.*\\\[NON_LVALUE_EXPR <__var_1_do>\\\]\\\[NON_LVALUE_EXPR <__var_2_do>\\\]" 1 "original" } } diff --git a/gcc/testsuite/gfortran.dg/no_arg_check_2.f90 b/gcc/testsuite/gfortran.dg/no_arg_check_2.f90 index 3570b97..0900dd8 100644 --- a/gcc/testsuite/gfortran.dg/no_arg_check_2.f90 +++ b/gcc/testsuite/gfortran.dg/no_arg_check_2.f90 @@ -129,12 +129,12 @@ end ! { dg-final { scan-tree-dump-times "sub_scalar .&scalar_int," 1 "original" } } ! { dg-final { scan-tree-dump-times "sub_scalar .&scalar_t1," 1 "original" } } -! { dg-final { scan-tree-dump-times "sub_scalar .&array_int.1.," 1 "original" } } +! { dg-final { scan-tree-dump-times "sub_scalar .&.*array_int" 1 "original" } } ! { dg-final { scan-tree-dump-times "sub_scalar .&scalar_t1," 1 "original" } } -! { dg-final { scan-tree-dump-times "sub_scalar .&\\(.\\(real.kind=4..0:. . restrict\\) array_real_alloc.data" 1 "original" } } +! { dg-final { scan-tree-dump-times "sub_scalar .&.*real.kind=4..0.*restrict.*array_real_alloc.data" 1 "original" } } ! { dg-final { scan-tree-dump-times "sub_scalar .\\(character.kind=1..1:1. .\\) .array_char_ptr.data" 1 "original" } } -! { dg-final { scan-tree-dump-times "sub_scalar .&\\(.\\(struct t2.0:. . restrict\\) array_t2_alloc.data" 1 "original" } } +! { dg-final { scan-tree-dump-times "sub_scalar .&.*struct t2.0:..*restrict.*array_t2_alloc.data" 1 "original" } } ! { dg-final { scan-tree-dump-times "sub_scalar .\\(struct t3 .\\) .array_t3_ptr.data" 1 "original" } } ! { dg-final { scan-tree-dump-times "sub_scalar .\\(struct t1 .\\) array_class_t1_alloc._data.data" 1 "original" } } ! { dg-final { scan-tree-dump-times "sub_scalar .\\(struct t1 .\\) \\(array_class_t1_ptr._data.dat" 1 "original" } } diff --git a/gcc/testsuite/gfortran.dg/pr32921.f b/gcc/testsuite/gfortran.dg/pr32921.f index 0661208..8534386 100644 --- a/gcc/testsuite/gfortran.dg/pr32921.f +++ b/gcc/testsuite/gfortran.dg/pr32921.f @@ -45,4 +45,4 @@ RETURN END -! { dg-final { scan-tree-dump-times "stride" 4 "lim2" } } +! { dg-final { scan-tree-dump-times "ubound" 4 "lim2" } } diff --git a/gcc/testsuite/gfortran.dg/reassoc_4.f b/gcc/testsuite/gfortran.dg/reassoc_4.f index fdcb46e..2368b76 100644 --- a/gcc/testsuite/gfortran.dg/reassoc_4.f +++ b/gcc/testsuite/gfortran.dg/reassoc_4.f @@ -1,5 +1,5 @@ ! { dg-do compile } -! { dg-options "-O3 -ffast-math -fdump-tree-reassoc1 --param max-completely-peeled-insns=200" } +! { dg-options "-O3 -ffast-math -fdump-tree-reassoc1 --param max-completely-peeled-insns=200 --param delinearize=0" } subroutine anisonl(w,vo,anisox,s,ii1,jj1,weight) integer ii1,jj1,i1,iii1,j1,jjj1,k1,l1,m1,n1 real*8 w(3,3),vo(3,3),anisox(3,3,3,3),s(60,60),weight