
Exposing Complex Numbers to Target Back-ends

Sylvain Noiry
Kalray SA, Montbonnot Saint-Martin, France

snoiry@kalrayinc.com

Paul Iannetta
Kalray SA, Montbonnot Saint-Martin, France

piannetta@kalrayinc.com

Abstract

Complex numbers are used to describe many physical phenomenons and are of prime impor-
tance in data signal processing. Nevertheless, despite being part of the C and C++ standards
since C99, they are still not completely first class citizens in mainstream compilers. This can be
explained by the fact that most general purpose instruction sets did not have hardware support
for complex operations for a long time. Here, we (1) review the current state of complex numbers
in gcc and llvm; (2) explain why supporting complex numbers in a generic and extensible way
that can be finely tuned for each architecture is important; (3) present a framework which extends
complex numbers support in gcc, and allows each target to specify how complex numbers should
be lowered, how they can be vectorized, and how operations on complex number should be mapped
to assembly instructions. We conclude by presenting a before/after comparison on a selected set
of programs and suggest some ideas to improve the framework that we would like to consider next.

1 Introduction

One way to improve performance is to identify common patterns and build hardware with dedicated
instructions. Digital Signal Processing and other areas of Physics make heavy use of complex numbers
(most notably when computing Fourier transforms). To our knowledge, the APEmile was one of the
first chip to come with native support in 1996. Currently, we can also note that Hexagon provided
native support for operations on complex numbers. And with the evolution of vector extensions, other
manufacturers have recently introduced instructions which can operate directly on complex numbers
as well. However, gcc’s current support of complex number does not expose complex numbers to
target back-ends which precludes the selection of native instruction working on complex numbers.

1.1 GCC and Complex Numbers

The support of complex operation in gcc has started even before the adoption of C99, during the
1990s. One important aspect from this period which remains today is the split of a complex element in
two pseudo registers grouped in an element called concat that can be non-contiguous allocated during
the expand pass [1]. This pass transform the gimple target-independent intermediate representation
into the rtl target-dependent one. This approach relaxes the register allocation on targets with
small register files, like IA-32. However, there have been multiple attempts to replace the concat
by contiguous hard registers [2] or more advanced structures [3]. One of the reason is the arrival of
processors with native complex instructions, such as the APEmille [4] in 1996. Because 32-bit float
complex are the most common, performance issues associated with the extraction of the inner parts
have also been identified on 64-bit processors [5, 6].

1

At the beginning, the lowering of complex operations was performed during the expand pass [5]. At
that point, exposing patterns handling complex number to the rtl would have been possible. However,
since at that time, no targets had native complex instructions, the lowering of complex numbers was
moved into its own gimple pass (cplx lower) [7], when the gimple representation was converted to
the Single Static Assignment (SSA) around 2004.

Although there was some recent changes concerning the optimizations to the support of moves of
complex types [8], the overall mechanisms are still the same. Now that native complex instructions
are becoming more and more present in today’s instructions sets [9, 10] this is starting to become an
issue. ARM and Intel are using work around relying on pattern matching in the SLP vectorization pass
to reconstruct operations on (vectors of) complex numbers from the lowered representations [11, 12].
However, due to the fact that it relies on pattern matching it might miss some opportunities and the
current state of the implementation is not completely target-agnostic.

1.2 Related Work

Even though the multi layered IR (MLIR) has a means to deal with complex number through the
complex dialect [15], llvm does not expose complex numbers to the back-end writers either despite
a sporadic but continuous demand since at least 2010. The last proposal [14, 13] reviews some past
discussions and summarize the main use-cases (digital signal processing and geometry in the complex
plane), as well as two directions to implement the support for complex numbers. The first one would
rely on a new set of intrinsic functions, doing so would be mostly transparent and the new intrinsic
functions could be ignored by parts which want to ignore complex numbers, however, it would make it
harder to work on complex numbers and harness their algebraic properties. Another direction, which
is also the one we will follow in the rest of the paper, is to add complex scalar and complex vector
types into the compiler and expose them to the target back-ends. We think that commercial compilers
such as ICC (before using llvm as its core) and the IBM XLC compiler might have some support to
ease the generation of efficient code dealing with complex numbers, but we were not able to find any
references. If you have some, please feel free to contact us, and we will update this section accordingly.

1.3 Overview

Throughout this paper, most examples will use the Kalray Coolidge (Version 2) instruction set since
it has native instructions for complex numbers as well as SIMD operations on them. However, the
changes to gcc that we present here are target-agnostic and gated behind target hooks.

First, we will present our goals, our design, and the rationale behind our design. In a second
time, we will present the details of the implementation, highlight the minimal set of changes needed
for a back-end to enable complex numbers support, and pinpoint other parts of the compiler already
partially handled by GCC that could be integrated into our implementation. In a third time, we will
show how those new features enable a gain in speed on a Fast Fourier Transform by comparing the
assembly code before and after on the Kalray Coolidge Version 2 MPPA. Lastly, we will review the
things that could have been different, or more convenient as a back-end writter and present some
future work directions.

2 Rationale

Since gcc already supports complex numbers, the extension is designed as super-set of the current
implementation and tries not to duplicate existing code. In the current GCC, complex numbers are
split into their real and imaginary parts. Once split, the compiler can almost forget about complex
numbers altogether. We decided to reuse the complex scalar types, as well as add complex vector
types. The major difference is that complex numbers are not split when a target back-ends exposes
operations which can directly work on complex numbers. Reusing existing types allows reusing most
of the current optimizations and vectorization comes almost for free.

2

(define_insn "addsci6"

[(set (concat:CSI

(match_operand:SI 0 "register_operand" "=r")

(match_operand:SI 1 "register_operand" "=r"))

(plus:CSI (concat:CSI (match_operand:SI 2 "register_operand" "r")

(match_operand:SI 3 "register_operand" "r"))

(concat:CSI (match_operand:SI 4 "register_operand" "r")

(match_operand:SI 5 "register_operand" "r"))))]

""

;; Add a pair of words

"adddwp %0 = %2, %4")

Figure 1: Concat-based patterns

(define_predicate "concat_operand" (match_code "concat"))

(define_insn "addcsi3"

[(set (match_operand:CSI 0 "concat_operand" "=r")

(plus:CSI (match_operand:CSI 1 "concat_operand" "r")

(match_operand:CSI 2 "concat_operand" "r")))]

""

;; Add a pair of words

"adddwp %0 = %1, %2")

Figure 2: Concat-operand-based patterns

Back-ends with hardware support for native SIMD instructions for complex numbers should have
a mean to declare such vectors directly from C or C++, and the internal layout of such vectors should
be opaque so that each target can choose what fits it best.

3 Implementation

3.1 Two Approaches

Exposing concat to the rtl. One of the most immediate approaches is to allow concat to filter
through rtl and allow patterns to match against it. Despite the fact that the impact on the existing
code was minimal and did not introduce changes to the gimple, it comes with several issues: code
manipulating complex constants was not optimal (spurious extractions/insertions or spilling); the
vectorizer would need changes, and writing patterns with concat is not completely evident. One way
is to match against concat as seen in Figure 1, this is far from optimal since this changes the arity of
the patterns and the proxies (%0, %1, %2) make assumptions on the layout of the register file. Another
way, is to resort to a concat operand predicate as in Figure 2, this has the advantage to not blow
up the arity of the patterns, but we lose access to what is under the concat. For all this reason, we
decided to abandon this idea and focused on the following approach.

Exposing complex values to the rtl. This time we promote the already existing complex modes
(CQI, CHI, CSI, CDI, SC and DC) to fully supported modes which may hold native values instead of only a
concat of two real values. The lowering pass (cplx lower) split complex numbers into components on
demand, and the rest of the compiler passes work mostly as usual as if complex numbers were normal
scalar values. Patterns such as addition, subtraction and other arithmetic operators are naturally
extended to their complex counter-parts.

3

3.2 Conditional Lowering

Previously complex numbers were gradually lowered as see fit until the main lowering pass (cplx lower)
which splits all remaining complex numbers into their real and imaginary components. This makes
perfect sense for instruction set without native support for complex numbers. However, it is show-
stopper for instruction sets which do have them. It would be better to lower complex numbers to
a pair of real numbers only when some operation is not supported. Hence, the need for conditional
lowering. In this section we review what gcc has been doing until now and describes the changes we
made to the front-end and to the middle-end.

Book-keeping omitted, complex numbers are currently processed in four steps: first, they are
recognized (and simplified to some extent) at parse time; second, they are split by the cplx lower

pass; third, on some architecture the SLP (superlevel-word parallelism) pass recognizes and vectorizes
operations on complex numbers to some extent; and finally, the expand pass transform gimple to
rtl. After those four steps, no operations on complex numbers exists anymore, except for function
arguments and return value.

Parse time. Even though the major part of the lowering happens in the cplx lower pass, some
decisions, such as the detection of rotations (i.e., multiplication by the imaginary unit) are performed
at parse time. This add noise that makes the job of the cplx lower pass harder. Therefore, we decided
to not split anything at parse time. Instead, we add annotations so that information discovered by the
parser is forwarded to the cplx lower pass.

We should note that “complex numbers” are also used by some builtin functions with two return
values (such as atomic compare exchange or overflow), but this does not prove to be a problem to our
implementation.

The cplx lower pass. This is where all operations on complex numbers are turned into operations
on real numbers, or into a library call. Real and imaginary parts are extracted into REAL PART and
IMAG PART and combined into a COMPLEX EXPR. In some rare cases, these lowered operations will be
caught when performing vectorization and generate SIMD instructions, but since most type informa-
tion is lost even basic operations may be missed.

/* Before the (*@\cplxlower@*)pass */

_3 = a_1(D) + b_2(D);

/* After the (*@\cplxlower@*)pass */

a$real_5 = REALPART_EXPR <a_1(D)>;

a$imag_6 = IMAGPART_EXPR <a_1(D)>;

b$real_7 = REALPART_EXPR <b_2(D)>;

b$imag_8 = IMAGPART_EXPR <b_2(D)>;

_9 = a$real_5 + b$real_7;

_10 = a$imag_6 + b$imag_8;

_3 = COMPLEX_EXPR <_9, _10>;

On the other hand, our implementation keeps complex numbers as much as possible and resort
to real and imaginary parts only when there is no target support and in some special cases. This is
detailed in section 3.4 and section 3.3.

The expand pass. Until now, this pass translated complex numbers by creating a concat structure
made of two pseudo-registers holding the real and imaginary parts. The rtl that is produced directly
uses the pseudo-registers inside the concat except for function arguments and return values where
the “complex register” associated with the whole concat structure is used. Practically, this means
that target back-ends never a get a chance to see registers with a complex type. The pseudo-registers
referenced by a concat structure are later mapped either to a single register (e.g., a complex float fits
in a 64-bit register), or to multiple (non necessarily contiguous) registers. The real and complex parts
are accessed in rtl via independant registers or subregs even for trivial operations, which oftentimes
leads to spurious insertions and extractions. concats were explicitly introduced to allow complex

4

(a) Old complex operations flow

(b) New complex operations flow

Figure 3: Complex operations processing in GIMPLE

types to be mapped to non-contiguous registers to ease register allocation on targets with a small
register file [1], however, it incurs a performance loss on modern 64-bit targets where the insertion and
extraction are much more frequent.

Our implementation behaves the same when it comes to complex numbers that have been split,
however, it exposes three functions from the generic code as hooks (target gen rtx complex,
target read complex part and target write complex part), so as to give control over the
creation of complex registers, and how complex types and complex vector types are stored and fetched
from memory.

Figure 3 summarizes the differences between the old and the new behavior. In particular, the pass
cplx lower does not always lower complex numbers, and now the vectorizer also takes vectors of
complex numbers as input.

3.3 Patterns for Complex Modes

Up until now, operations on complex numbers could not be described in machine descriptions. Hence,
patterns were only generated for scalar modes (i.e., integers and floating-point numbers). Rather than
expanding the list of optabs with new pattern names such as cmulsi for the multiplication of complex
(32-bit) integers, we decided to extend the available modes for all arithmetic patterns. This way, the
pattern for the multiplication of complex integers becomes mulcsi, and avoid duplicating standard
optabs. Likewise, we extended legal vector modes to complex modes as well, which allows to describe
SIMD operations on complex numbers, and enable the autovectorizer (cf Section 3.6).

Depending on whether a target fills those complex patterns or not the lowering pass (cplx lower)
will either keep the complex as-is or split it into its components. Currently, the supported optabs are:
mov, add, conj sub, mul and rotations (crot90 and crot270). This complex division div could also
be added but it is not currently supported. This makes it easy to support the patterns added by ARM
(cmul, cmul conj, cadd90 and cadd270). In fact, by providing a finer-grained implementation all those
patterns can be recognized by our implementation and the combination of two simplex operations such
as cmul conj can be handled by the combine pass.

We keep the old behavior and split the complex numbers into a pair of real numbers in two cases:
when a target does not have native support, or when either the real or imaginary part is a constant.
The case where either the real or imaginary is a constant leads to decisions which are not clear-cut. In
particular, we should be careful not to hamper constant folding and constant propagation even when
the complex numbers are not split.

Fast patterns. Among all the complex types operations, a machine can probably not handle all of
them natively. Sometimes, it could be more efficient to emulate an operation manually than letting gcc
splitting it. However, writing an emulated pattern using define expand or define insn split may
not be easy when IEEE compliance needs to be checked a floating point type. fast patterns have
been designed as a way to only write the fast path of emulated IEEE compliant operation. All checks
are kept in the generic code, like in expand complex multiplication for the complex multiplication.

5

uninit real imaginary

real lower native native

imaginary native

native native native native

A
B

native

lower

full

complex

full

complex

lower lower

Figure 4: Conditional Lowering

A back-end programmer can use it by creating a pattern prefixed by fast before the optab name.
Fast patterns can be interesting when dealing with emulated operation on any composite type.

The presence of both “unified” complex numbers and “split” complex numbers leads to some
complexity that we will address in a later sections.

3.4 “Unified” & “Split” Complexes

Because all complex operations need not be supported by a target, some of them will be lowered.
Moreover, there are some cases where it makes sense to lower them anyway even though native op-
erations may exists. Thus, our implementation has to support a mix of both representations, and it
should be simple to switch from one to the other.

Figure 4 details in which cases a complex operation on A and B will lower its operand or keep them
as unified complex numbers. The cases where B is not initialized corresponds to unary operations on
A. The gist of it is that when the operands are in fact both reals or imaginary numbers the operation
is split otherwise we keep it as-is as long as the target supports it.

It should be easy to switch from both representation at any time, hence, complex constants and
SSA variables can be accessed through three components: their real part, their imaginary part, or
both of them. Of course, the inner real and imaginary part of the whole complex refers to the same
components as any of the two separately (see Fig. 5. Thus, any change to the whole complex will update
the components and any change to a component will update the whole complex as well. This means
that the three components are always up to date, and can be used interchangeably. One drawback is
that we generate instructions to update each component separately and it is clearly observable when
optimizations are not enabled. As this is dead code, it is removed by optimizations, and we did not
make any efforts to reduce unneeded instructions at -O0.

3.5 Fusion of Complex Operations

The design choices outlined above allows passes that merge operations into bigger ones, such as FMA
detection or the combine pass, works well with complex modes and we are able to synthetize complex
FMA or operations, such as rotate & add, or add & conjugate.

3.6 Vectorization

Currently, gcc’s vectorization passes only accept vectors of scalar elements. ARM’s attempt to by-
pass this restriction by introducing pattern matching in the SLP vectorization pass to infer complex
operations from a series of operations on real number that looks like an operation on complex numbers.

This is sub-summed by our implementation in all cases except when the pattern matching synthe-
sized a complex operation “by chance” even though the original source code was not working with
complex numbers.

6

op r

real imag both

real

imag

both

real

imag

both

complex expr

op i

(a) Lowered operation

op

real imag both

real

imag

both

real

imag

both

realpart expr imagpart expr

(b) Native operations

Figure 5: Mixing native and lowered complex operations

Im ReIm Re

(a) Real and imaginary parts in sepa-
rate vectors (SCV2)

Im Re Im Re

(b) Real and Imaginary parts inter-
leaved (V2SC)

Figure 6: A complex vector of length 2

Even though complex numbers cannot always be considered as scalars, “unified” complexes behave
exactly like scalar elements from the point of view of the vectorizer. Henceforth, allowing the vectorizer
to work on “unified” complexes is all that was needed to enable vectorization on complex modes.
Recent discussions on the mailing list [16] highlighted that the representation of vectors of complex
numbers is architecture dependent: exemple of such representations (SCVx and VxSC) can be seen in
Figure 6. Both make sense depending on the target architecture and the different kind of loads and
stores it exposes (especially the presence of interleaved loads and stores). Thus, the vectorizer does not
make any assumptions on the layout of vectors of complex numbers, and defer everything to machine
description.

We should note that this duplicate in part the features [11] behind the patterns dealing with
complex numbers deguised as vectors of float and caught by pattern names starting with “c” such as
cmul, cmul conj, cadd90.

4 Harmonization

Currently the implementation still has some rough corners due to the fact that we wanted to not break
anything, or introduce huge changes in the front and middle ends of gcc. However, once the new
implementation will be merged we may want to make more deep changes.

• Some decisions related to complex lowering are handled elsewhere the complex lowering pass
(cplx lower). As this makes conditional lowering harder we suggest that passes that currently
split complex numbers into their components instead add an annotations that will then be
processed by the cplx lower pass. This kind of approach has been successfully tested on complex
rotations using internal functions.

• The pattern-matching code in the SLP pass, as well as the associated special handling of some
cases needed for the pattern-matcher to work properly could be removed.

7

_Complex float

mul(_Complex float a, _Complex float b)

{

return a * b;

}

(a) Complex multiplication

mul:

copyw $r3 = $r0

extract imag part

extfz $r5 = $r0,32+32-1,32

;; # (end cycle 0)

float multiply

fmulw $r4 = $r3, $r1

;; # (end cycle 1)

float multiply

fmulw $r2 = $r5, $r1

extract real part

extfz $r1 = $r1,32+32-1,32

;; # (end cycle 2)

float multiply substract

ffmsw $r4 = $r5, $r1

;; # (end cycle 5)

float multiply add

ffmaw $r2 = $r3, $r1

;; # (end cycle 6)

insert back real part

insf $r0 = $r4,32+0-1, 0

;; # (end cycle 9)

insert back imag part

insf $r0 = $r2,32+32-1,32;

ret

;; # (end cycle 10)

(b) Before

mul:

Complex float multiply

fmulwc $r0 = $r0, $r1

ret

;; # (end cycle 0)

(c) After

Figure 7: A complex multiplication

• Currently, since complex modes are not under the umbrella type scalar mode, we need to provide
a duplicate of the simd preferred simd mode, and this hampers accepting vector of complex
numbers since there is an explicit check whether the type is scalar mode or not. This could
be improved by relaxing the constraints on scalar mode, or by introducing a dedicated list of
authorized mode as inner vector types.

5 Results

5.1 Small examples

The benefits of a full support of complex operation in gcc can be seen even for very small code
example. The example described in figure 7 is a simple precision complex multiplication. the code
generated previously (figure 7b) for the kvx machine was inefficient. With this implementation (figure
7c), a single native instruction has replaced everything. Similar results are obtains for additions,
subtractions, and negations.

8

void

fmacplx (

float complex a[restrict N],

float complex b[restrict N],

float complex c[restrict N],

float complex d[restrict N])

{

for (int i = 0; i < N; i++)

d[i] = c[i] + a[i] * b[i];

}

(a) Complex vector FMA

fmacplx:

make $r4 = 0

make $r5 = 32

;; # (end cycle 0)

begin hardware loop

loopdo $r5, .L56

;; # (end cycle 1)

.L53:

load 128-bit

lq.xs $r10r11 = $r4[$r1]

;; # (end cycle 0)

load 128-bit

lq.xs $r8r9 = $r4[$r0]

;; # (end cycle 1)

load 128-bit

lq.xs $r6r7 = $r4[$r2]

;; # (end cycle 2)

float complex FMA two lanes

ffmawcp $r6r7 = $r10r11, $r8r9

;; # (end cycle 5)

store 128-bit

sq.xs $r4[$r3] = $r6r7

addd $r4 = $r4, 1

;; # (end cycle 8)

loopdo end

.L56:

ret

(b) After

Figure 8: A complex vector FMA

In addition, fused or vectored operations have also been optimized. Considering a multiply accu-
mulate operation of vectors of complex elements of the figure 8, the generated code is shown in 8b.
The complex multiplications and additions have been fused. The loop has also been vectorized using
SIMD complex FMAs (ffmawcp). Memory operations have also been grouped by packets of 128-bit.

5.2 A radix 2 Fast Fourier Transform

Fast Fourier Transforms (FFT) are one of the most popular type of algorithms which uses complex
numbers in their inner logic. Until now, most implementations (cf papier benoit) redefines and uses
complex types and operations rather the standard C complex ones because of the poor performance of
the compiled code. Thus, a radix-2 in-place implementation has been used for benchmarking against
a standard GCC and another version that redefined complex operations using builtins. The code used
for this benchmark is in the listing of Figure 9.

Figure 10 shows the execution time obtained for the three different scenarios.

9

#define CMUL(a, b) __builtin_kvx_fmulwc(a, b, "")

#define CFFMA(a, b, c) __builtin_kvx_ffmawc(a, b, c, "")

void burrus_dif2_fft_float_(long n, cxf_t x[], float dir) {

long l2n = __builtin_ctzl(n);

for (long k = 0; k < l2n; k++) {

long n1 = n >> k;

long n2 = n1 >> 1;

cxf_t s1 = stage_dif2_fft_float_steps[l2n - k];

s1[1] = copysignf(s1[1], -dir);

cxf_t e1 = { 1.0, 0.0 };

for (long r = 0; r < n/2; r++) {

long j = r >> k;

long i = j + ((r<<(l2n-k)) & n-1);

long l = i + n2;

cxf_t t = x[i] - x[l];

x[i] = x[i] + x[l];

x[l] = CMUL(t, e1);

cxf_t e1n = CFFMA(e1, s1, e1);

if (j != (r+1)>>k) {

e1 = e1n; } } } }

Figure 9: DIT Radix-2 FFT

(a) Complex float data type (FP32) (b) Complex double data type (FP64)

Figure 10: Benchmarks results on FFTs

10

6 Implementation Summary

The approach described in this article has been implemented in the fork of gcc 12 maintained at
Kalray. It consists of a series of 13 patches, which are publicly available in a dedicated branch 1. Some
of them add the core features of the new way of processing complex number, whereas some others
introduce optimizations and side features. Back-end specific patches finally exploit these features for
the KVX target.

6.1 Current State

At the core of the implementation is the conditional splitting of complex operations depending on
the existing patterns in the target back-end. This allows natively supported operations to go to the
expand pass. Then, the three hooks which allow each back-end to have its own representation of
complex elements in rtl are the second major feature, as well as multiple update in the expand pass
to allow more diversity with complex handling.

Some complex specific operations have also been optimized. One of these is the introduction of a
conjugate operation in the rtl and in the machine description, which expands a gimple conj expr.
The way complex rotations are handled has also been improved to work without slp pattern matching.
Complex FMA can be generated like with any real type, whereas other fused instructions utilizes the
combine pass.

The implementation also add vectors of complex and provide an experimental support for explicit
and automatic vectorization. However vectors of composite types are not accepted in upstream for
now, but discussions are not closed. Fast patterns, as described in section 3.3, have also been originally
introduced to emulate the complex double multiplication without manual checking of IEEE compliance.

6.2 Future Work

Future works mainly involve the harmonization of the current implementation with the choices made
for the future of gcc. Assuming that the approach described in this article will not drastically change,
some points could be improved.

The experimental support for complex vectors has to be stabilized. It could also be interesting
to improve the auto-vectorization capabilities of mixed “Unified” and “Split” operations. Because
different vector types are used, this makes the vectorization of these more difficult. Explicit vectors of
complex type have also been experimentally added (using attribute ((vector size()), but the
implementation is currently not stable enough, mainly because the cplx lower pass cannot handle
vectored operations for now. One solution could be to lower explicit vectors by calling the vec lower

pass before cplx lower .
More outside complex numbers, the fast patterns which have been introduced in this implemen-

tation may also benefit to other operations, especially when emulating composite operations.

7 Extend Back-ends features

This section is quite different from the rest and focus mainly features that we think would be nice to
have to allow back-end to retarget the compiler more effectively.

Currently, despite having some control, target back-ends cannot easily extend the langage dialect
they are supporting, and cannot easily design custom passes which need to extend the features of the
middle-end. For example, even though, it is possible to have a target-dependent passes.def file, it
would be also nice to allow other def files to have a target-dependent counterpart.

1https://github.com/kalray/gcc/tree/complex/kvx

11

https://github.com/kalray/gcc/tree/complex/kvx

8 A minimal back-end

This section presents the main target hooks, and patterns introduced by our implementation and how
to implement them to enable complex mode support in an existing back-end.

8.1 Target hooks

As explained in section 3.2, each machine can choose its own representation of complex elements in
rtl by defining three target hooks:

• target gen rtx complex: This hook returns an rtl element corresponding to a complex.
Real and imaginary parts are passed by argument. If both are NULL, a newly created complex
must be returned.

• target read complex part: This hook returns a specified component of a complex element.
It can be the real part, the imaginary part, or both of them. The implementation can be inspired
by the previous read complex part generic function.

• target write complex part: This hook writes a complex component into a complex element.
The implementation can be inspired by the previous write complex part generic function.
Note that a concat type can still be passed in the field val even if the back-end uses an other
type for complex elements. This is a hack meant to allow optimization of moves from expanded
COMPLEX EXPR.

8.2 Complex Patterns

The next steps consists of implementing complex patterns, like any other pattern. The used mode
depends on the chosen complex representation in the above hooks. For common instructions with
real modes, like a complex addition and a two lanes vector addition, some patterns can be defined as
wrapper to already present ones. Don’t forget to include mov patterns to fully exploit the implemen-
tation. For example, a basic set of patterns can include mov, add, sub, neg, conj, mul, crot90, and
crot270. If some of these operations are not not natively supported by the target, emulated patterns
can sometimes bring more performance than automatic lowering in cplx lower . Indeed fast patterns
can be useful if there is a need to check for IEEE compliance of an emulated floating point operation.

8.3 Enable Vectorization

To enable the vectorization of “unified” complex operations, the vectorize preferred simd mode complex
target hook has to be implemented. It is basically the complex counterpart of vectorize preferred simd mode.
In addition, vector of complex modes have to be defined in the machine back-end, as well as vector
patterns.

9 Aknowledgement

This research has received funding from the European High Performance Computing Joint Undertaking
(JU) under Framework Partnership Agreement No 800928 (European Processor Initiative) and Specific
Grant Agreement No 101036168 (EPI SGA2), and also from bpifrance i-demo program.

10 Conclusion

We presented a flexible implementation of complex numbers into gcc that reuse the already available
machinery and enables target back-ends to fill-in patterns corresponding to complex numbers. This
reuses the existing machinery and, as such can benefit from all others passes.

12

References

[1] gcc source code, Richard Stallman, 1993:
”For complex modes, don’t make a single pseudo. Instead, make a CONCAT of two pseudos. This
allows noncontiguous allocation of the real and imaginary parts, which makes much better code.
Besides, allocating DCmode pseudos overstrains reload on some machines like the 386.”,
Commit: 3b80f6ca69f7

[2] consecutive hard regs in complexes,
gcc mailing lists, Benedetto Proietti, 2000:
https://gcc.gnu.org/pipermail/gcc/2000-June/049041.html

[3] generic PATCH: Replace CONCAT with RECORD REGS,
gcc mailing lists, Greg McGary, 1999:
https://gcc.gnu.org/pipermail/gcc-patches/1999-October/020122.html

[4] APEmille: a parallel processor in the teraflop range,
E. Panizzi, 1996:
https://arxiv.org/pdf/hep-lat/9609010.pdf

[5] The complex problems,
gcc mailing lists, Jeffrey A Law, 1999:
https://gcc.gnu.org/pipermail/gcc/1999-July/033369.html

[6] complex float support and 64 bit hosts,
gcc mailing lists, Jim Wilson, 1999:
https://gcc.gnu.org/pipermail/gcc-patches/1999-August/015609.html

[7] [tree-ssa] lower complex operations,
gcc mailing lists, Richard Henderson, 2004:
https://gcc.gnu.org/pipermail/gcc-patches/2004-January/124515.html

[8] [PATCH] Complex move by parts,
gcc mailing lists, David Edelsohn, 2005:
https://gcc.gnu.oimplmrg/pipermail/gcc-patches/2005-March/164182.html

[9] Arm SVE documentation:
https://developer.arm.com/documentation/ddi0584/latest/

[10] Intel AVX512-FP16 documentation:
https://networkbuilders.intel.com/solutionslibrary/intel-avx-512-fp16-instruction-set-for-intel-xeon-processor-based-products-technology-guide

[11] [PATCH] middle-end: Support complex Addition,
gcc mailing lists, Tamar Christina, 2020:
https://gcc.gnu.org/pipermail/gcc-patches/2020-November/559908.html

[12] [PATCH]Arm: Add NEON and MVE complex mul, mla and mls patterns.,
gcc mailing lists, Tamar Christina, 2021:
https://gcc.gnu.org/pipermail/gcc-patches/2021-January/564015.html

[13] RFC: Complex in LLVM,
llvm forum, David A Greene, 2019:
https://discourse.llvm.org/t/rfc-complex-in-llvm/52400

[14] Complex proposal v3 + roundtable agenda,
llvm forum, David A Greene, 2019:
https://discourse.llvm.org/t/complex-proposal-v3-roundtable-agenda/53439

13

https://gcc.gnu.org/pipermail/gcc/2000-June/049041.html
https://gcc.gnu.org/pipermail/gcc-patches/1999-October/020122.html
https://arxiv.org/pdf/hep-lat/9609010.pdf
https://gcc.gnu.org/pipermail/gcc/1999-July/033369.html
https://gcc.gnu.org/pipermail/gcc-patches/1999-August/015609.html
https://gcc.gnu.org/pipermail/gcc-patches/2004-January/124515.html
https://gcc.gnu.oimplémrg/pipermail/gcc-patches/2005-March/164182.html
https://developer.arm.com/documentation/ddi0584/latest/
https://networkbuilders.intel.com/solutionslibrary/intel-avx-512-fp16-instruction-set-for-intel-xeon-processor-based-products-technology-guide
https://gcc.gnu.org/pipermail/gcc-patches/2020-November/559908.html
https://gcc.gnu.org/pipermail/gcc-patches/2021-January/564015.html
https://discourse.llvm.org/t/rfc-complex-in-llvm/52400
https://discourse.llvm.org/t/complex-proposal-v3-roundtable-agenda/53439

[15] C representation of complex types?,
llvm forum, dpotop, 2020:
https://discourse.llvm.org/t/c-representation-of-complex-types/2180

[16] [PATCH] Add COMPLEX VECTOR INT modes,
gcc mailing lists, Andrew Stubbs, 2023:
https://gcc.gnu.org/pipermail/gcc-patches/2023-May/619825.html

14

https://discourse.llvm.org/t/c-representation-of-complex-types/2180
https://gcc.gnu.org/pipermail/gcc-patches/2023-May/619825.html

	Introduction
	GCC and Complex Numbers
	Related Work
	Overview

	Rationale
	Implementation
	Two Approaches
	Conditional Lowering
	Patterns for Complex Modes
	``Unified'' & ``Split'' Complexes
	Fusion of Complex Operations
	Vectorization

	Harmonization
	Results
	Small examples
	A radix 2 Fast Fourier Transform

	Implementation Summary
	Current State
	Future Work

	Extend Back-ends features
	A minimal back-end
	Target hooks
	Complex Patterns
	Enable Vectorization

	Aknowledgement
	Conclusion

