
Stree design notes
Matt Austern, Robert Bowdidge, Geoff Keating

The stree project is based on three fundamental premises. First: for an important class of
development tasks (roughly: GUI programs written in a relatively simple subset of C++,
compiled at –O0 –g), compilation time is dominated by the C++ front end. Second: the
performance of the C++ front end is dominated by memory allocation and management.
This includes memory allocation, initializing newly allocating objects, and bookkeeping
for garbage collection. Reducing front end memory usage should thus improve front end
performance. Third: many programs consist of small source files that include truly
enormous header files. Such header files include <iostream> (25,000 lines), Apple’s
<Carbon/Carbon.h> (91,000 lines), and the X11 headers. Any given translation unit only
uses a tiny fraction of the declarations in one of these headers.

The goal of this project is to reduce the time and memory required for handling unused
declarations.

Basic design principles
The main idea of the stree project is to avoid generating decl trees when possible. Instead
the parser will generate a compact flat representation for declarations, called an stree, and
expand the stree to a decl tree when necessary. Strees are not a substitute for trees. The
middle-end and back end will still understand trees, not strees.

Some immediate implications of this basic idea:
• Trees and strees will always coexist. This means that it is acceptable for the

parser to generate strees only in simple and common cases, and to fall back to
decl trees in more complicated cases. We can add incrementally add cases where
we are able to generate strees.

• Usually we generate strees only for declarations that are not also definitions. So,
for example, we would generate an stree for “void do_nothing();”(which the
middle end and back end don’t necessarily have to know about), but we would
generate a full tree for “void do_nothing() { }” (which the middle end has to
expand to RTL).

• For a declaration that is not a definition, there is a simple way to characterize
whether or not the definition is “needed”: some other declaration refers to it by
name. For example: if a function “xyzzy” is declared but nobody ever defines it,
takes its address, or calls a function with that name, then that declaration isn’t
needed, and generating a decl tree for it is wasted time and space.

• This definition of “needed” immediately leads to an implementation technique.
References to a decl by name always go through a cxx_binding object. (See
name_lookup.h). So we just need to make cxx_binding a little bit more
complicated: when we ask a cxx_binding for the value of the binding, we check to

see whether we have a tree or an stree. If the latter, we expand it into a tree and
cache the expanded version.

• Given this definition of whether a declaration is “needed”, we have to be careful
about putting decls on global lists. This work will be useless if we end up
expanding all decls anyway.

• Error checking must all be done in the initial parse phase, while generating the
stree, and not as part of stree-to-tree expansion. Rationale: we always need error
checking, but not all strees will be expanded. (There is also an implementation
reason why we don’t want to defer emission of diagnostics. Early diagnostics
reduce the need for global state to be remembered for each stree: source code
position, current_binding_level, current_class_ptr, etc.)

An example: enumerators
Consider the front end data structure for a simple enumeration declaration, “enum foo {
a, b };”. We have two enumerators. For each one we need to know its name, its type, the
underlying integer type used to represent it, and its value. At present we represent
enumerators with CONST_DECL nodes, so each enumerator takes 128 bytes for the
tree_decl node, plus additional memory for cp-tree.h’s version of lang_decl.

Each enumerator has an entry in the hash table, an identifier. Each identifier has a
pointer to a binding of type cxx_binding (this is the bindings field in lang_identifier,
defined in name_lookup.h). The binding for “foo” itself points to a tree_type, and the
bindings for “a” and “b” point to CONST_DECL nodes. Each CONST_DECL node has
pointers to the name and to the ENUMERAL_TYPE node, and additionally has a pointer
to a node representing the enumerator’s value. In simple examples (like this one) each
enumerator’s value is an INTEGER_CST, giving us another 36 bytes each. (An
INTEGER_CST node contains tree_common as a substructure, with all the generality
that implies.)

We don’t need 200 bytes to represent the fact that the enumerator “a” has the value 0.
First: as an stree it’s unnecessary to store a pointer to the name of this enumerator. The
stree will only be accessed via a cxx_binding, so any code that accesses the stree already
knows the name. Second: it isn’t necessary to use anything so large as an
INTEGER_CST to represent the value “0”. Most of the information stored in an
INTEGER_CST (chain nodes, type pointers, etc.) is unnecessary, since we already know
we’re getting to the value through an enumerator. We only need to store two pieces of
information: the enumeration that this enumerator is associated with, and its initial value.
This allows us to represent the enumerator in six bytes: a one-byte code for the type of
the stree (specifically: the TREE_CODE of the tree that this stree corresponds to), four
bytes (a pointer or the equivalent) for the enumeration, and one byte for the value. (Note
that this implies a variable-width encoding for the integer values; some enumerations will
require seven or more bytes.)

Our current implementation is limited to enumerations defined at namespace scope.
First, enumerations defined at class scope require additional context information. Second,
enumerators declared at class scope might have values that depend on template

parameters, meaning that we can't necessarily represent the values as simple integers.
Neither is a serious problem. Because a cxx_binding's value can be either a tree or stree,
we can use strees for the common, simple cases, and default to trees otherwise. Because
strees are a variable-sized representation, we can add additional values needed for
building trees for the complex case as needed without bloating the simpler cases.

Some implementation details
The stree data structure itself is defined in stree.[ch]. Strees are tightly-packed, serialized
representations of simple declarations.

Strees are stored on the gc heap, but not directly: instead, they are stored in multi-page
blocks of virtual memory ("chunks"), where a single chunk may contain multiple strees.
Each stree is represented by an index; a separate table maps each index to the appropriate
chunk and position within that chunk. We thus don’t traffic in pointers to strees, but
rather in integer indices referencing a location in memory. Storing strees in this manner
avoids creating new objects and additional work for the garbage collector, and simplifies
precompiled headers by ensuring that the chunks don’t need to be placed at a specific
address or when reloaded -- only the table pointers need to be swizzled.

Clients access stree data via an iterator: given an stree with index s, the function
get_s_tree_iter (declared in stree.h) creates an iterator pointing to the beginning of s.
Other functions declared in stree.h access the iterator to extract each serialized value in
turn. This scheme allows us to store data in the most compressed representation possible,
and in a way such that clients are insulated from the details of the representation. For
enumerators, for example, instead of using a full INTEGER_CST for each value, we can
use one or two bytes in the (typical) case where the values are small.

Strees are created with build_s_tree, a varargs function defined stree.c. Its first argument
is the stree code, and its remaining arguments are the contents of that stree and tags to
identify their types. There is no function for creating an stree by treating it as a “stream”
to which values are written one at a time; eventually there probably will need to be one.
It won’t be hard to add it.

Stree.h and stree.c are language-independent, since, at bottom, strees are just a way of
packing bytes and integers into chunks. Creation and expansion of strees are language
dependent. The present implementation is focused on C++.

We change cxx_binding::value from type “tree” to type “s_tree_i_or_tree” (a tagged
union), and we change IDENTIFIER_VALUE so that it returns the tree value, expanding
the stree if necessary. A few changes are required in functions that manipulate
cxx_binding directly, but those changes are largely mechanical and are localized to
cp/name_lookup.[ch].

Strees are expanded by the s_tree_to_tree function, defined in cp/decl.c. There are three
points to notice about it. First, as described above, it uses the stree iterator interface.
Second, the first byte of the stree is the stree code; s_tree_to_tree uses that code to

determine what kind of tree to create. Third, at present s_tree_to_tree doesn’t handle any
cases other than enumerators.

The major changes required to use strees for enumerators are in build_enumerator. First,
we need to separate parsing and error checking from tree generation, deferring the latter
until later. Second, for simple cases we use build_s_tree to create the stree and
push_s_decl to enter the stree into the current lexical scope. In principle push_s_decl
would need to know all of the same logic that pushdecl does; in practice we only use
push_s_decl for the simplest cases, deferring to pushdecl (i.e. using trees instead of
strees) for the more complicated cases.

This design has the virtue that most of the C++ front end doesn’t have to know about
strees: code that goes through binding to get trees looks exactly as before. It has the
defect that, as presently written, it requires code duplication. The code required to
generate an enumerator node is in both build_enumerator and s_tree_to_tree.
Additionally, s_tree_to_tree is manageable only because at the moment it only handles a
single case. If this project succeeds, and we’re handling many kinds of strees, it would
become a monstrosity. The right solution will probably be to replace s_tree_to_tree with
a wrapper function that examines the stree code and dispatches to a function for the
appropriate code, and, for each code, to write an implementation function that’s shared
between the tree and stree versions. Similarly, we can probably achieve better code
sharing between pushdecl and push_s_decl.

Debugging information
At present the compiler will not generate debugging information for unexpanded strees.
This is potentially a serious issue. In principle, there are two ways of dealing with this
issue: either figure out a way to generate debugging information without expanding
strees, or else decide that it’s acceptable to omit debugging information for “unused”
declarations. (Note that by “unused”, we mean declarations that are irrelevant to the
compilation of the code rather than “never executed”. As soon as a declaration’s name is
seen elsewhere in the code, we create a decl tree node for the name.)

We don’t believe this will be a serious problem. Consider the effect of missing debug
information for unused declarations:

• Unused variables: Only variable declarations are affected; variable definitions
require code to be generated, and so will be expanded. If the definition occurs in
another translation unit, we can get debug information from there. If the variable
declaration is completely unused, we can’t do anything with it from the debugger,
for it has no memory associated with it.

• Unused functions: ditto. Again, the existence of definition or a function call
counts as a use, so we will get debug info even if the function is defined in
another translation unit. There’s nothing a user can do in the debugger with a
function that’s never defined anywhere in the program.

• Unused classes and structures: at best, an unused class or structure is uninteresting
because no instances of the object could have been created. If the instances exist
in another translation unit, the debugging information in that translation unit will

be used by the debugger. The only case where the missing information may be
desired is if a programmer wants to cast a pointer to an unused type and view the
memory.

• Unused enums: like structures and types, unused enums are uninteresting because
no uses could exist if the enum were unused. Like types and structs, programmers
may want to see the value of an unused enum. Without additional work, strees
would not provide enough debugging information for a programmer to see all
enum values. However, that additional work won’t be difficult if we decide that
unused enums are important.

More importantly, some gcc versions already remove unneeded declarations from debug
information. GCC 3.4 does not generated DWARF debug info for function declarations,
and does not generate debug info for used types unless -fno-eliminate-unused-debug-
types is specified. Apple’s gcc has stripped “unused” symbols out of STABS debugging
format for the last two and a half years. The debugger team expected many bugs from
users trying to examine unused declarations, but have been surprised at how few bugs
they’ve received. One of the few complaints was from a user who had a “debug” version
of a struct that was used only for pretty-printing the real structure, and was stripped out
because it was never actually referenced.

To do
• Expand to other kinds of declarations: enumerations inside classes, enumeration

types, function declarations, and class declarations. We suspect that our biggest
performance win with Apple’s source code will occur if we can lazily create class
declarations, because measurements suggest that creation of implicit constructors
for unused POD classes appears to take significant time during our compiles.

• Refactor the stree creation and expansion code in cp/decl.c to avoid code
duplication. Or, to put it differently: develop a general framework for separating
the early phase (parsing and error checking) from the later stages of tree
generation and transformation.

• Separate out the checks required for user declarations from those for compiler-
generated declarations.

• Get rid of the tree_or_stree struct. Instead just us an ordinary union, and steal one
of the unused bits in cxx_binding to identify which member we want.

• Eliminate remaining global scans of decls, to make sure that we don’t expand
strees unnecessarily.

