public inbox for gcc@gcc.gnu.org
 help / color / mirror / Atom feed
* HIRLAM and -ftree-loop-linear
@ 2007-12-14 22:30 Toon Moene
  2007-12-15 22:55 ` Sebastian Pop
  2007-12-16 14:33 ` Dorit Nuzman
  0 siblings, 2 replies; 7+ messages in thread
From: Toon Moene @ 2007-12-14 22:30 UTC (permalink / raw)
  To: Sebastian Pop, gcc mailing list

[-- Attachment #1: Type: text/plain, Size: 608 bytes --]

Sebastian,

Here are (attached) results for testing HIRLAM with and without 
-ftree-loop-linear.

As you can see, the results are neutral:  4 loops fewer vectorized, but 
about 50 fewer recognized.

Now I like to redo that test with -ftree-loop-distribution.  Can you 
send me a patch against the trunk (otherwise it won't be a fair comparison).

Kind regards,

-- 
Toon Moene - e-mail: toon@moene.indiv.nluug.nl - phone: +31 346 214290
Saturnushof 14, 3738 XG  Maartensdijk, The Netherlands
At home: http://moene.indiv.nluug.nl/~toon/
GNU Fortran's path to Fortran 2003: http://gcc.gnu.org/wiki/Fortran2003

[-- Attachment #2: loop-tests.txt --]
[-- Type: text/plain, Size: 3839 bytes --]

Baseline, no source changes:

Mon Dec 10 17:45:19 UTC 2007 (revision 130746)

Compilation flags:

CCFLAGS := -g -O3 $(MACHINECPP) -ffast-math -fno-associative-math -march=native -mtune=native -ftree-vectorizer-verbose=2
FCFLAGS := -g -O3 -fbacktrace -ffpe-trap=invalid,zero,overflow -ffast-math -fno-associative-math -march=native -mtune=native -ftree-vectorizer-verbose=2

Loops vectorized:
5675
Loops not vectorized:
13705

Timings:
20061201_00/HL_Cycle_2006120100.html: FORECAST TOOK    12.7488 SECONDS
20061201_00/HL_Cycle_2006120100.html: FORECAST TOOK  2445.9609 SECONDS
20061201_06/HL_Cycle_2006120106.html: FORECAST TOOK   259.3362 SECONDS
20061201_06/HL_Cycle_2006120106.html: FORECAST TOOK    12.4408 SECONDS
20061201_06/HL_Cycle_2006120106.html: FORECAST TOOK   305.9351 SECONDS
20061201_12/HL_Cycle_2006120112.html: FORECAST TOOK   262.1124 SECONDS
20061201_12/HL_Cycle_2006120112.html: FORECAST TOOK    12.7448 SECONDS
20061201_12/HL_Cycle_2006120112.html: FORECAST TOOK  2323.3733 SECONDS
20061201_12r/HL_Cycle_2006120112r.html: FORECAST TOOK   412.7058 SECONDS
20061201_18/HL_Cycle_2006120118.html: FORECAST TOOK   264.5685 SECONDS
20061201_18/HL_Cycle_2006120118.html: FORECAST TOOK    12.6648 SECONDS
20061201_18/HL_Cycle_2006120118.html: FORECAST TOOK   306.7352 SECONDS
20061202_00/HL_Cycle_2006120200.html: FORECAST TOOK   261.5164 SECONDS
20061202_00/HL_Cycle_2006120200.html: FORECAST TOOK    12.7688 SECONDS
20061202_00/HL_Cycle_2006120200.html: FORECAST TOOK  2325.3774 SECONDS
20061202_00r/HL_Cycle_2006120200r.html: FORECAST TOOK   413.8739 SECONDS

Baseline, no source changes, with -ftree-loop-linear:

Mon Dec 10 17:45:19 UTC 2007 (revision 130746)

Compilation flags:

CCFLAGS := -g -O3 $(MACHINECPP) -ftree-loop-linear -ffast-math -fno-associative-math -march=native -mtune=native -ftree-vectorizer-verbose=2
FCFLAGS := -g -O3 -ftree-loop-linear -fbacktrace -ffpe-trap=invalid,zero,overflow -ffast-math -fno-associative-math -march=native -mtune=native -ftree-vectorizer-verbose=2

This compilation got one ICE:

rttov_aitosu.f90: In function 'rttov_aitosu':
rttov_aitosu.f90:4: error: definition in block 262 does not dominate use in block 134
for SSA_NAME: pretmp.240_59 in statement:
prephitmp.220_58 = PHI <pretmp.240_59(134), D.1480_1373(138)>
PHI argument
pretmp.240_59
for PHI node
prephitmp.220_58 = PHI <pretmp.240_59(134), D.1480_1373(138)>
rttov_aitosu.f90:4: internal compiler error: verify_ssa failed
Please submit a full bug report,
with preprocessed source if appropriate.
See <http://gcc.gnu.org/bugs.html> for instructions.

Worked around by compiling this file without -ftree-loop-linear

Loops vectorized:
5671
Loops not vectorized:
13655

Timings:
20061201_00/HL_Cycle_2006120100.html: FORECAST TOOK    12.5648 SECONDS
20061201_00/HL_Cycle_2006120100.html: FORECAST TOOK  2444.1208 SECONDS
20061201_06/HL_Cycle_2006120106.html: FORECAST TOOK   259.3402 SECONDS
20061201_06/HL_Cycle_2006120106.html: FORECAST TOOK    12.4728 SECONDS
20061201_06/HL_Cycle_2006120106.html: FORECAST TOOK   307.8672 SECONDS
20061201_12/HL_Cycle_2006120112.html: FORECAST TOOK   260.0323 SECONDS
20061201_12/HL_Cycle_2006120112.html: FORECAST TOOK    12.8608 SECONDS
20061201_12/HL_Cycle_2006120112.html: FORECAST TOOK  2310.2485 SECONDS
20061201_12r/HL_Cycle_2006120112r.html: FORECAST TOOK   411.3977 SECONDS
20061201_18/HL_Cycle_2006120118.html: FORECAST TOOK   261.1283 SECONDS
20061201_18/HL_Cycle_2006120118.html: FORECAST TOOK    12.7248 SECONDS
20061201_18/HL_Cycle_2006120118.html: FORECAST TOOK   308.1313 SECONDS
20061202_00/HL_Cycle_2006120200.html: FORECAST TOOK   262.7564 SECONDS
20061202_00/HL_Cycle_2006120200.html: FORECAST TOOK    12.6528 SECONDS
20061202_00/HL_Cycle_2006120200.html: FORECAST TOOK  2336.5620 SECONDS
20061202_00r/HL_Cycle_2006120200r.html: FORECAST TOOK   410.6577 SECONDS

^ permalink raw reply	[flat|nested] 7+ messages in thread

* Re: HIRLAM and -ftree-loop-linear
  2007-12-14 22:30 HIRLAM and -ftree-loop-linear Toon Moene
@ 2007-12-15 22:55 ` Sebastian Pop
  2007-12-16 14:15   ` Toon Moene
  2007-12-16 14:33 ` Dorit Nuzman
  1 sibling, 1 reply; 7+ messages in thread
From: Sebastian Pop @ 2007-12-15 22:55 UTC (permalink / raw)
  To: Toon Moene; +Cc: gcc mailing list

[-- Attachment #1: Type: text/plain, Size: 1284 bytes --]

On Dec 14, 2007 4:24 PM, Toon Moene <toon@moene.indiv.nluug.nl> wrote:
> Here are (attached) results for testing HIRLAM with and without
> -ftree-loop-linear.
>

Thanks Toon for checking this.

> Compilation flags:
>
> CCFLAGS := -g -O3 $(MACHINECPP) -ftree-loop-linear -ffast-math -fno-associative-math -march=native -mtune=native -ftree-vectorizer-verbose=2
> FCFLAGS := -g -O3 -ftree-loop-linear -fbacktrace -ffpe-trap=invalid,zero,overflow -ffast-math -fno-associative-math -march=native -mtune=native -ftree-vectorizer-verbose=2
>
> This compilation got one ICE:
>
> rttov_aitosu.f90: In function 'rttov_aitosu':
> rttov_aitosu.f90:4: error: definition in block 262 does not dominate use in block 134
> for SSA_NAME: pretmp.240_59 in statement:
> prephitmp.220_58 = PHI <pretmp.240_59(134), D.1480_1373(138)>
> PHI argument
> pretmp.240_59
> for PHI node
> prephitmp.220_58 = PHI <pretmp.240_59(134), D.1480_1373(138)>
> rttov_aitosu.f90:4: internal compiler error: verify_ssa failed
> Please submit a full bug report,
> with preprocessed source if appropriate.
> See <http://gcc.gnu.org/bugs.html> for instructions.
>
> Worked around by compiling this file without -ftree-loop-linear
>

Could you verify that the attached patch fixes also this problem?

Thanks again,
Sebastian

[-- Warning: decoded text below may be mangled, UTF-8 assumed --]
[-- Attachment #2: 859_pr34123.diff --]
[-- Type: text/x-diff; name=859_pr34123.diff, Size: 8877 bytes --]

2007-12-15  Sebastian Pop  <sebastian.pop@amd.com>

	* lambda-code.c (can_duplicate_iv): New.
	(cannot_convert_modify_to_perfect_nest): New.
	(cannot_convert_bb_to_perfect_nest): New.
	(can_convert_to_perfect_nest): Split up.

email:sebpop@gmail.com
branch:trunk
revision:HEAD
configure:
make:
check:

Index: testsuite/gcc.dg/tree-ssa/pr34123.c
===================================================================
--- testsuite/gcc.dg/tree-ssa/pr34123.c	(revision 0)
+++ testsuite/gcc.dg/tree-ssa/pr34123.c	(revision 0)
@@ -0,0 +1,18 @@
+/* { dg-do compile } */
+/* { dg-options "-O2 -ftree-loop-linear" } */
+
+/* Testcase by Martin Michlmayr <tbm@cyrius.com> */
+
+static unsigned char sbox[256] = {
+};
+void MD2Transform (unsigned char state[16])
+{
+  unsigned char t = 0;
+  int i, j;
+  for (i = 0; i < 16; i++)
+    {
+      for (j = 0; j < 2; j++)
+        t = (state[j] ^= sbox[t]);
+      t += i;
+    }
+}
Index: lambda-code.c
===================================================================
--- lambda-code.c	(revision 130956)
+++ lambda-code.c	(working copy)
@@ -2177,7 +2177,128 @@ can_put_after_inner_loop (struct loop *l
   return true;
 }
 
+/* Return true when the induction variable IV is simple enough to be
+   re-synthesized.  */
 
+static bool
+can_duplicate_iv (tree iv, struct loop *loop)
+{
+  tree scev = instantiate_parameters
+    (loop, analyze_scalar_evolution (loop, iv));
+
+  if (!automatically_generated_chrec_p (scev))
+    {
+      tree step = evolution_part_in_loop_num (scev, loop->num);
+
+      if (step && step != chrec_dont_know && TREE_CODE (step) == INTEGER_CST)
+	return true;
+    }
+
+  return false;
+}
+
+/* If this is a scalar operation that can be put back into the inner
+   loop, or after the inner loop, through copying, then do so. This
+   works on the theory that any amount of scalar code we have to
+   reduplicate into or after the loops is less expensive that the win
+   we get from rearranging the memory walk the loop is doing so that
+   it has better cache behavior.  */
+
+static bool
+cannot_convert_modify_to_perfect_nest (tree stmt, struct loop *loop)
+{
+  
+  use_operand_p use_a, use_b;
+  imm_use_iterator imm_iter;
+  ssa_op_iter op_iter, op_iter1;
+  tree op0 = GIMPLE_STMT_OPERAND (stmt, 0);
+
+  /* The statement should not define a variable used in the inner
+     loop.  */
+  if (TREE_CODE (op0) == SSA_NAME
+      && !can_duplicate_iv (op0, loop))
+    FOR_EACH_IMM_USE_FAST (use_a, imm_iter, op0)
+      if (bb_for_stmt (USE_STMT (use_a))->loop_father
+	  == loop->inner)
+	return true;
+
+  FOR_EACH_SSA_USE_OPERAND (use_a, stmt, op_iter, SSA_OP_USE)
+    {
+      tree node, op = USE_FROM_PTR (use_a);
+
+      /* The variables should not be used in both loops.  */
+      if (!can_duplicate_iv (op, loop))
+	FOR_EACH_IMM_USE_FAST (use_b, imm_iter, op)
+	  if (bb_for_stmt (USE_STMT (use_b))->loop_father
+	      == loop->inner)
+	    return true;
+
+      /* The statement should not use the value of a scalar that was
+	 modified in the loop.  */
+      node = SSA_NAME_DEF_STMT (op);
+      if (TREE_CODE (node) == PHI_NODE)
+	FOR_EACH_PHI_ARG (use_b, node, op_iter1, SSA_OP_USE)
+	{
+	  tree arg = USE_FROM_PTR (use_b);
+
+	  if (TREE_CODE (arg) == SSA_NAME)
+	    {
+	      tree arg_stmt = SSA_NAME_DEF_STMT (arg);
+
+	      if (bb_for_stmt (arg_stmt)
+		  && (bb_for_stmt (arg_stmt)->loop_father
+		      == loop->inner))
+		return true;
+	    }
+	}
+    }
+
+  return false;
+}
+
+/* Return true when BB contains statements that can harm the transform
+   to a perfect loop nest.  */
+
+static bool
+cannot_convert_bb_to_perfect_nest (basic_block bb, struct loop *loop)
+{
+  block_stmt_iterator bsi;
+  tree exit_condition = get_loop_exit_condition (loop);
+
+  for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
+    { 
+      tree stmt = bsi_stmt (bsi);
+
+      if (stmt == exit_condition
+	  || not_interesting_stmt (stmt)
+	  || stmt_is_bumper_for_loop (loop, stmt))
+	continue;
+
+      if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
+	{
+	  if (cannot_convert_modify_to_perfect_nest (stmt, loop))
+	    return true;
+
+	  if (can_duplicate_iv (GIMPLE_STMT_OPERAND (stmt, 0), loop))
+	    continue;
+
+	  if (can_put_in_inner_loop (loop->inner, stmt)
+	      || can_put_after_inner_loop (loop, stmt))
+	    continue;
+	}
+
+      /* If the bb of a statement we care about isn't dominated by the
+	 header of the inner loop, then we can't handle this case
+	 right now.  This test ensures that the statement comes
+	 completely *after* the inner loop.  */
+      if (!dominated_by_p (CDI_DOMINATORS,
+			   bb_for_stmt (stmt), 
+			   loop->inner->header))
+	return true;
+    }
+
+  return false;
+}
 
 /* Return TRUE if LOOP is an imperfect nest that we can convert to a
    perfect one.  At the moment, we only handle imperfect nests of
@@ -2187,117 +2308,22 @@ static bool
 can_convert_to_perfect_nest (struct loop *loop)
 {
   basic_block *bbs;
-  tree exit_condition, phi;
+  tree phi;
   size_t i;
-  block_stmt_iterator bsi;
-  basic_block exitdest;
 
   /* Can't handle triply nested+ loops yet.  */
   if (!loop->inner || loop->inner->inner)
     return false;
   
   bbs = get_loop_body (loop);
-  exit_condition = get_loop_exit_condition (loop);
   for (i = 0; i < loop->num_nodes; i++)
-    {
-      if (bbs[i]->loop_father == loop)
-	{
-	  for (bsi = bsi_start (bbs[i]); !bsi_end_p (bsi); bsi_next (&bsi))
-	    { 
-	      tree stmt = bsi_stmt (bsi);
-
-	      if (stmt == exit_condition
-		  || not_interesting_stmt (stmt)
-		  || stmt_is_bumper_for_loop (loop, stmt))
-		continue;
-
-	      /* If this is a scalar operation that can be put back
-	         into the inner loop, or after the inner loop, through
-		 copying, then do so. This works on the theory that
-		 any amount of scalar code we have to reduplicate
-		 into or after the loops is less expensive that the
-		 win we get from rearranging the memory walk
-		 the loop is doing so that it has better
-		 cache behavior.  */
-	      if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
-		{
-		  use_operand_p use_a, use_b;
-		  imm_use_iterator imm_iter;
-		  ssa_op_iter op_iter, op_iter1;
-		  tree op0 = GIMPLE_STMT_OPERAND (stmt, 0);
-		  tree scev = instantiate_parameters
-		    (loop, analyze_scalar_evolution (loop, op0));
-
-		  /* If the IV is simple, it can be duplicated.  */
-		  if (!automatically_generated_chrec_p (scev))
-		    {
-		      tree step = evolution_part_in_loop_num (scev, loop->num);
-		      if (step && step != chrec_dont_know 
-			  && TREE_CODE (step) == INTEGER_CST)
-			continue;
-		    }
-
-		  /* The statement should not define a variable used
-		     in the inner loop.  */
-		  if (TREE_CODE (op0) == SSA_NAME)
-		    FOR_EACH_IMM_USE_FAST (use_a, imm_iter, op0)
-		      if (bb_for_stmt (USE_STMT (use_a))->loop_father
-			  == loop->inner)
-			goto fail;
-
-		  FOR_EACH_SSA_USE_OPERAND (use_a, stmt, op_iter, SSA_OP_USE)
-		    {
-		      tree node, op = USE_FROM_PTR (use_a);
-
-		      /* The variables should not be used in both loops.  */
-		      FOR_EACH_IMM_USE_FAST (use_b, imm_iter, op)
-		      if (bb_for_stmt (USE_STMT (use_b))->loop_father
-			  == loop->inner)
-			goto fail;
-
-		      /* The statement should not use the value of a
-			 scalar that was modified in the loop.  */
-		      node = SSA_NAME_DEF_STMT (op);
-		      if (TREE_CODE (node) == PHI_NODE)
-			FOR_EACH_PHI_ARG (use_b, node, op_iter1, SSA_OP_USE)
-			  {
-			    tree arg = USE_FROM_PTR (use_b);
-
-			    if (TREE_CODE (arg) == SSA_NAME)
-			      {
-				tree arg_stmt = SSA_NAME_DEF_STMT (arg);
-
-				if (bb_for_stmt (arg_stmt)
-				    && (bb_for_stmt (arg_stmt)->loop_father
-					== loop->inner))
-				  goto fail;
-			      }
-			  }
-		    }
-
-		  if (can_put_in_inner_loop (loop->inner, stmt)
-		      || can_put_after_inner_loop (loop, stmt))
-		    continue;
-		}
-
-	      /* Otherwise, if the bb of a statement we care about isn't
-		 dominated by the header of the inner loop, then we can't
-		 handle this case right now.  This test ensures that the
-		 statement comes completely *after* the inner loop.  */
-	      if (!dominated_by_p (CDI_DOMINATORS,
-				   bb_for_stmt (stmt), 
-				   loop->inner->header))
-		goto fail;
-	    }
-	}
-    }
+    if (bbs[i]->loop_father == loop
+	&& cannot_convert_bb_to_perfect_nest (bbs[i], loop))
+      goto fail;
 
   /* We also need to make sure the loop exit only has simple copy phis in it,
-     otherwise we don't know how to transform it into a perfect nest right
-     now.  */
-  exitdest = single_exit (loop)->dest;
-  
-  for (phi = phi_nodes (exitdest); phi; phi = PHI_CHAIN (phi))
+     otherwise we don't know how to transform it into a perfect nest.  */
+  for (phi = phi_nodes (single_exit (loop)->dest); phi; phi = PHI_CHAIN (phi))
     if (PHI_NUM_ARGS (phi) != 1)
       goto fail;
   

^ permalink raw reply	[flat|nested] 7+ messages in thread

* Re: HIRLAM and -ftree-loop-linear
  2007-12-15 22:55 ` Sebastian Pop
@ 2007-12-16 14:15   ` Toon Moene
  0 siblings, 0 replies; 7+ messages in thread
From: Toon Moene @ 2007-12-16 14:15 UTC (permalink / raw)
  To: Sebastian Pop; +Cc: gcc mailing list

Sebastian Pop wrote:

 > I wrote:

>> rttov_aitosu.f90: In function 'rttov_aitosu':
>> rttov_aitosu.f90:4: error: definition in block 262 does not dominate use in block 134
>>
>> Worked around by compiling this file without -ftree-loop-linear
>>
> 
> Could you verify that the attached patch fixes also this problem?

Unfortunately, it doesn't; I get exactly the same error message as before.

Kind regards,

-- 
Toon Moene - e-mail: toon@moene.indiv.nluug.nl - phone: +31 346 214290
Saturnushof 14, 3738 XG  Maartensdijk, The Netherlands
At home: http://moene.indiv.nluug.nl/~toon/
GNU Fortran's path to Fortran 2003: http://gcc.gnu.org/wiki/Fortran2003

^ permalink raw reply	[flat|nested] 7+ messages in thread

* Re: HIRLAM and -ftree-loop-linear
  2007-12-14 22:30 HIRLAM and -ftree-loop-linear Toon Moene
  2007-12-15 22:55 ` Sebastian Pop
@ 2007-12-16 14:33 ` Dorit Nuzman
  2007-12-16 17:17   ` Toon Moene
  2007-12-17 21:24   ` Toon Moene
  1 sibling, 2 replies; 7+ messages in thread
From: Dorit Nuzman @ 2007-12-16 14:33 UTC (permalink / raw)
  To: Toon Moene; +Cc: gcc mailing list, Sebastian Pop

> Sebastian,
>
> Here are (attached) results for testing HIRLAM with and without
> -ftree-loop-linear.
>
> As you can see, the results are neutral:  4 loops fewer vectorized, but
> about 50 fewer recognized.
>

any chance you kept the dumps and can report which loops were not
vectorized/recognized with -ftree-loop-linear (so we could see if these
represent missed vectorization opportunities?)

thanks,
dorit

> Now I like to redo that test with -ftree-loop-distribution.  Can you
> send me a patch against the trunk (otherwise it won't be a fair
comparison).
>
> Kind regards,
>
> --
> Toon Moene - e-mail: toon@moene.indiv.nluug.nl - phone: +31 346 214290
> Saturnushof 14, 3738 XG  Maartensdijk, The Netherlands
> At home: http://moene.indiv.nluug.nl/~toon/
> GNU Fortran's path to Fortran 2003: http://gcc.gnu.org/wiki/Fortran2003
> Baseline, no source changes:
>
> Mon Dec 10 17:45:19 UTC 2007 (revision 130746)
>
> Compilation flags:
>
> CCFLAGS := -g -O3 $(MACHINECPP) -ffast-math -fno-associative-math -
> march=native -mtune=native -ftree-vectorizer-verbose=2
> FCFLAGS := -g -O3 -fbacktrace -ffpe-trap=invalid,zero,overflow -
> ffast-math -fno-associative-math -march=native -mtune=native -ftree-
> vectorizer-verbose=2
>
> Loops vectorized:
> 5675
> Loops not vectorized:
> 13705
>
> Timings:
> 20061201_00/HL_Cycle_2006120100.html: FORECAST TOOK    12.7488 SECONDS
> 20061201_00/HL_Cycle_2006120100.html: FORECAST TOOK  2445.9609 SECONDS
> 20061201_06/HL_Cycle_2006120106.html: FORECAST TOOK   259.3362 SECONDS
> 20061201_06/HL_Cycle_2006120106.html: FORECAST TOOK    12.4408 SECONDS
> 20061201_06/HL_Cycle_2006120106.html: FORECAST TOOK   305.9351 SECONDS
> 20061201_12/HL_Cycle_2006120112.html: FORECAST TOOK   262.1124 SECONDS
> 20061201_12/HL_Cycle_2006120112.html: FORECAST TOOK    12.7448 SECONDS
> 20061201_12/HL_Cycle_2006120112.html: FORECAST TOOK  2323.3733 SECONDS
> 20061201_12r/HL_Cycle_2006120112r.html: FORECAST TOOK   412.7058 SECONDS
> 20061201_18/HL_Cycle_2006120118.html: FORECAST TOOK   264.5685 SECONDS
> 20061201_18/HL_Cycle_2006120118.html: FORECAST TOOK    12.6648 SECONDS
> 20061201_18/HL_Cycle_2006120118.html: FORECAST TOOK   306.7352 SECONDS
> 20061202_00/HL_Cycle_2006120200.html: FORECAST TOOK   261.5164 SECONDS
> 20061202_00/HL_Cycle_2006120200.html: FORECAST TOOK    12.7688 SECONDS
> 20061202_00/HL_Cycle_2006120200.html: FORECAST TOOK  2325.3774 SECONDS
> 20061202_00r/HL_Cycle_2006120200r.html: FORECAST TOOK   413.8739 SECONDS
>
> Baseline, no source changes, with -ftree-loop-linear:
>
> Mon Dec 10 17:45:19 UTC 2007 (revision 130746)
>
> Compilation flags:
>
> CCFLAGS := -g -O3 $(MACHINECPP) -ftree-loop-linear -ffast-math -fno-
> associative-math -march=native -mtune=native -ftree-vectorizer-verbose=2
> FCFLAGS := -g -O3 -ftree-loop-linear -fbacktrace -ffpe-trap=invalid,
> zero,overflow -ffast-math -fno-associative-math -march=native -
> mtune=native -ftree-vectorizer-verbose=2
>
> This compilation got one ICE:
>
> rttov_aitosu.f90: In function 'rttov_aitosu':
> rttov_aitosu.f90:4: error: definition in block 262 does not dominate
> use in block 134
> for SSA_NAME: pretmp.240_59 in statement:
> prephitmp.220_58 = PHI <pretmp.240_59(134), D.1480_1373(138)>
> PHI argument
> pretmp.240_59
> for PHI node
> prephitmp.220_58 = PHI <pretmp.240_59(134), D.1480_1373(138)>
> rttov_aitosu.f90:4: internal compiler error: verify_ssa failed
> Please submit a full bug report,
> with preprocessed source if appropriate.
> See <http://gcc.gnu.org/bugs.html> for instructions.
>
> Worked around by compiling this file without -ftree-loop-linear
>
> Loops vectorized:
> 5671
> Loops not vectorized:
> 13655
>
> Timings:
> 20061201_00/HL_Cycle_2006120100.html: FORECAST TOOK    12.5648 SECONDS
> 20061201_00/HL_Cycle_2006120100.html: FORECAST TOOK  2444.1208 SECONDS
> 20061201_06/HL_Cycle_2006120106.html: FORECAST TOOK   259.3402 SECONDS
> 20061201_06/HL_Cycle_2006120106.html: FORECAST TOOK    12.4728 SECONDS
> 20061201_06/HL_Cycle_2006120106.html: FORECAST TOOK   307.8672 SECONDS
> 20061201_12/HL_Cycle_2006120112.html: FORECAST TOOK   260.0323 SECONDS
> 20061201_12/HL_Cycle_2006120112.html: FORECAST TOOK    12.8608 SECONDS
> 20061201_12/HL_Cycle_2006120112.html: FORECAST TOOK  2310.2485 SECONDS
> 20061201_12r/HL_Cycle_2006120112r.html: FORECAST TOOK   411.3977 SECONDS
> 20061201_18/HL_Cycle_2006120118.html: FORECAST TOOK   261.1283 SECONDS
> 20061201_18/HL_Cycle_2006120118.html: FORECAST TOOK    12.7248 SECONDS
> 20061201_18/HL_Cycle_2006120118.html: FORECAST TOOK   308.1313 SECONDS
> 20061202_00/HL_Cycle_2006120200.html: FORECAST TOOK   262.7564 SECONDS
> 20061202_00/HL_Cycle_2006120200.html: FORECAST TOOK    12.6528 SECONDS
> 20061202_00/HL_Cycle_2006120200.html: FORECAST TOOK  2336.5620 SECONDS
> 20061202_00r/HL_Cycle_2006120200r.html: FORECAST TOOK   410.6577 SECONDS

^ permalink raw reply	[flat|nested] 7+ messages in thread

* Re: HIRLAM and -ftree-loop-linear
  2007-12-16 14:33 ` Dorit Nuzman
@ 2007-12-16 17:17   ` Toon Moene
  2007-12-17 21:24   ` Toon Moene
  1 sibling, 0 replies; 7+ messages in thread
From: Toon Moene @ 2007-12-16 17:17 UTC (permalink / raw)
  To: Dorit Nuzman; +Cc: gcc mailing list, Sebastian Pop

Dorit Nuzman wrote:

> any chance you kept the dumps and can report which loops were not
> vectorized/recognized with -ftree-loop-linear (so we could see if these
> represent missed vectorization opportunities?)

I haven't, but it wouldn't be too much effort do this.

I'll try stage 1 tonight - i.e., to establish a base (with the latest 
trunk check-out, not using -ftree-loop-linear), and then subsequently 
using that flag.

Kind regards,

-- 
Toon Moene - e-mail: toon@moene.indiv.nluug.nl - phone: +31 346 214290
Saturnushof 14, 3738 XG  Maartensdijk, The Netherlands
At home: http://moene.indiv.nluug.nl/~toon/
GNU Fortran's path to Fortran 2003: http://gcc.gnu.org/wiki/Fortran2003

^ permalink raw reply	[flat|nested] 7+ messages in thread

* Re: HIRLAM and -ftree-loop-linear
  2007-12-16 14:33 ` Dorit Nuzman
  2007-12-16 17:17   ` Toon Moene
@ 2007-12-17 21:24   ` Toon Moene
  2007-12-17 22:45     ` Toon Moene
  1 sibling, 1 reply; 7+ messages in thread
From: Toon Moene @ 2007-12-17 21:24 UTC (permalink / raw)
  To: Dorit Nuzman; +Cc: gcc mailing list, Sebastian Pop

[-- Attachment #1: Type: text/plain, Size: 856 bytes --]

Dorit Nuzman wrote:

> any chance you kept the dumps and can report which loops were not
> vectorized/recognized with -ftree-loop-linear (so we could see if these
> represent missed vectorization opportunities?)

It's a bit much to send you everything, so I'll just send you the diff + 
two routines (from blas/lapack) that had differences (one positive, one 
negative).

The sum total of 'LOOP VECTORIZED' messages:

$ wc -l vect.*
   5651 vect.lin                 # -ftree-loop-linear
   5673 vect.nolin               # no -ftree-loop-linear
$ diff -cp vect.nolin vect.lin  # attached

Hope this is useful,

-- 
Toon Moene - e-mail: toon@moene.indiv.nluug.nl - phone: +31 346 214290
Saturnushof 14, 3738 XG  Maartensdijk, The Netherlands
At home: http://moene.indiv.nluug.nl/~toon/
GNU Fortran's path to Fortran 2003: http://gcc.gnu.org/wiki/Fortran2003

[-- Attachment #2: vect.diff --]
[-- Type: text/x-diff, Size: 12457 bytes --]

*** vect.nolin	2007-12-17 22:08:13.000000000 +0100
--- vect.lin	2007-12-17 22:05:06.000000000 +0100
*************** abgcri.f:147: note: LOOP VECTORIZED.
*** 2,8 ****
  abgcri.f:159: note: LOOP VECTORIZED.
  abgcri.f:170: note: LOOP VECTORIZED.
  acconvad.f90:1076: note: LOOP VECTORIZED.
- acconvad.f90:1235: note: LOOP VECTORIZED.
  acconvad.f90:1250: note: LOOP VECTORIZED.
  acconvad.f90:1321: note: LOOP VECTORIZED.
  acconvad.f90:1322: note: LOOP VECTORIZED.
--- 2,7 ----
*************** acconvad.f90:1368: note: LOOP VECTORIZED
*** 53,59 ****
  acconvad.f90:1483: note: LOOP VECTORIZED.
  acconvad.f90:2418: note: LOOP VECTORIZED.
  acconvad.f90:2593: note: LOOP VECTORIZED.
- acconvad.f90:2719: note: LOOP VECTORIZED.
  acconvad.f90:509: note: LOOP VECTORIZED.
  acconvad.f90:784: note: LOOP VECTORIZED.
  acconv.f90:355: note: LOOP VECTORIZED.
--- 52,57 ----
*************** bndrel.f:295: note: LOOP VECTORIZED.
*** 720,725 ****
--- 718,724 ----
  bndrel.f:307: note: LOOP VECTORIZED.
  bndrel.f:323: note: LOOP VECTORIZED.
  bndrel.f:342: note: LOOP VECTORIZED.
+ b_obspace.f:1262: note: LOOP VECTORIZED.
  b_obspace.f:1539: note: LOOP VECTORIZED.
  b_obspace.f:1546: note: LOOP VECTORIZED.
  b_obspace.f:815: note: LOOP VECTORIZED.
*************** bucomp.f:116: note: LOOP VECTORIZED.
*** 734,739 ****
--- 733,739 ----
  bucomp.f:94: note: LOOP VECTORIZED.
  bucrekey.f:90: note: LOOP VECTORIZED.
  bucrekey.f:98: note: LOOP VECTORIZED.
+ bucrkey.f:95: note: LOOP VECTORIZED.
  buedd.f:202: note: LOOP VECTORIZED.
  buedd.f:215: note: LOOP VECTORIZED.
  buedd.f:228: note: LOOP VECTORIZED.
*************** buepwt.f:170: note: LOOP VECTORIZED.
*** 756,761 ****
--- 756,763 ----
  buepwt.f:184: note: LOOP VECTORIZED.
  buepwt.f:255: note: LOOP VECTORIZED.
  buepwt.f:270: note: LOOP VECTORIZED.
+ buetab.f:231: note: LOOP VECTORIZED.
+ buetab.f:246: note: LOOP VECTORIZED.
  buetab.f:331: note: LOOP VECTORIZED.
  buetab.f:336: note: LOOP VECTORIZED.
  buetab.f:346: note: LOOP VECTORIZED.
*************** bufrsort.f90:879: note: LOOP VECTORIZED.
*** 807,812 ****
--- 809,816 ----
  bufrsort_prepare.f90:197: note: LOOP VECTORIZED.
  bufrthin.f:138: note: LOOP VECTORIZED.
  bufr_traffic_info.f90:173: note: LOOP VECTORIZED.
+ bugbts.f:253: note: LOOP VECTORIZED.
+ bugbts.f:260: note: LOOP VECTORIZED.
  bugbts.f:349: note: LOOP VECTORIZED.
  bugbts.f:354: note: LOOP VECTORIZED.
  bugbts.f:356: note: LOOP VECTORIZED.
*************** bustdr.f:120: note: LOOP VECTORIZED.
*** 863,868 ****
--- 867,873 ----
  bustdr.f:133: note: LOOP VECTORIZED.
  bustdr.f:149: note: LOOP VECTORIZED.
  bustdr.f:164: note: LOOP VECTORIZED.
+ buta.f:261: note: LOOP VECTORIZED.
  buta.f:470: note: LOOP VECTORIZED.
  buta.f:476: note: LOOP VECTORIZED.
  buta.f:672: note: LOOP VECTORIZED.
*************** cal_cov_multi.f:580: note: LOOP VECTORIZ
*** 904,910 ****
  cal_cov_multi.f:941: note: LOOP VECTORIZED.
  cal_cov_multi.f:942: note: LOOP VECTORIZED.
  cal_cov_multi.f:943: note: LOOP VECTORIZED.
- cal_cov_multi.f:944: note: LOOP VECTORIZED.
  cal_cov_multi.f:945: note: LOOP VECTORIZED.
  cal_cov_multi.f:946: note: LOOP VECTORIZED.
  cal_cov_multi.f:947: note: LOOP VECTORIZED.
--- 909,914 ----
*************** dgeev.f:6347: note: LOOP VECTORIZED.
*** 1337,1342 ****
--- 1341,1348 ----
  dgeev.f:6391: note: LOOP VECTORIZED.
  dgeev.f:6504: note: LOOP VECTORIZED.
  dgeev.f:6525: note: LOOP VECTORIZED.
+ dgeev.f:6783: note: LOOP VECTORIZED.
+ dgeev.f:6822: note: LOOP VECTORIZED.
  dgeev.f:772: note: LOOP VECTORIZED.
  dgeev.f:843: note: LOOP VECTORIZED.
  dgemm.f:231: note: LOOP VECTORIZED.
*************** extrob.f:390: note: LOOP VECTORIZED.
*** 1645,1652 ****
  extrob.f:393: note: LOOP VECTORIZED.
  extzer.f:132: note: LOOP VECTORIZED.
  extzer.f:143: note: LOOP VECTORIZED.
- f02age.f:56: note: LOOP VECTORIZED.
- f02age.f:62: note: LOOP VECTORIZED.
  fdvrfy.f:165: note: LOOP VECTORIZED.
  fdvrfy.f:271: note: LOOP VECTORIZED.
  fdvrfy.f:307: note: LOOP VECTORIZED.
--- 1651,1656 ----
*************** gemini_ad.f:739: note: LOOP VECTORIZED.
*** 1810,1815 ****
--- 1814,1820 ----
  gemini_ad.f:812: note: LOOP VECTORIZED.
  gemini.f:1317: note: LOOP VECTORIZED.
  gemini.f:1647: note: LOOP VECTORIZED.
+ gemini.f:1664: note: LOOP VECTORIZED.
  gemini.f:1884: note: LOOP VECTORIZED.
  gemini.f:1923: note: LOOP VECTORIZED.
  gemini.f:1943: note: LOOP VECTORIZED.
*************** gribiohixb.f:1849: note: LOOP VECTORIZED
*** 2023,2028 ****
--- 2028,2034 ----
  gribiohixb.f:1926: note: LOOP VECTORIZED.
  gribiohixb.f:231: note: LOOP VECTORIZED.
  gribiohixb.f:2392: note: LOOP VECTORIZED.
+ grid2obspoints.f:95: note: LOOP VECTORIZED.
  grid2obspointsfgat.f:129: note: LOOP VECTORIZED.
  grid2obspointsfgat.f:249: note: LOOP VECTORIZED.
  grid2obspointsfgat.f:307: note: LOOP VECTORIZED.
*************** mrtmsys.f:879: note: LOOP VECTORIZED.
*** 2778,2783 ****
--- 2784,2790 ----
  mrtmsys.f:880: note: LOOP VECTORIZED.
  mrtmsys.f:881: note: LOOP VECTORIZED.
  mrtmsys.f:971: note: LOOP VECTORIZED.
+ mrtmsys.f:972: note: LOOP VECTORIZED.
  mrtmsys.f:974: note: LOOP VECTORIZED.
  mrtmsys.f:975: note: LOOP VECTORIZED.
  mrtmsys.f:978: note: LOOP VECTORIZED.
*************** npsol.f:8203: note: LOOP VECTORIZED.
*** 3012,3018 ****
  npsol.f:8328: note: LOOP VECTORIZED.
  npsol.f:8333: note: LOOP VECTORIZED.
  npsol.f:8540: note: LOOP VECTORIZED.
- npsol.f:8566: note: LOOP VECTORIZED.
  npsol.f:8592: note: LOOP VECTORIZED.
  npsol.f:8736: note: LOOP VECTORIZED.
  npsol.f:8772: note: LOOP VECTORIZED.
--- 3019,3024 ----
*************** postpp.f:752: note: LOOP VECTORIZED.
*** 3353,3359 ****
  postpp.f:790: note: LOOP VECTORIZED.
  prcbuo.f:832: note: LOOP VECTORIZED.
  prcshp.f:821: note: LOOP VECTORIZED.
- prcsyn.f:821: note: LOOP VECTORIZED.
  precheck_cma.f90:152: note: LOOP VECTORIZED.
  precip.f:56: note: LOOP VECTORIZED.
  precond.f:355: note: LOOP VECTORIZED.
--- 3359,3364 ----
*************** prepare_scatt_work.f:714: note: LOOP VEC
*** 3408,3413 ****
--- 3413,3420 ----
  prepare_seawinds_work.f:324: note: LOOP VECTORIZED.
  prepare_ship_work.f:296: note: LOOP VECTORIZED.
  prepare_ship_work.f:357: note: LOOP VECTORIZED.
+ prepare_ssmi_work.f:446: note: LOOP VECTORIZED.
+ prepare_ssmi_work.f:450: note: LOOP VECTORIZED.
  prepare_synop_work.f:295: note: LOOP VECTORIZED.
  prepare_synop_work.f:357: note: LOOP VECTORIZED.
  prepare_temp_work.f:290: note: LOOP VECTORIZED.
*************** rttov_aitosu_ad.f90:492: note: LOOP VECT
*** 3908,3926 ****
  rttov_aitosu_ad.f90:493: note: LOOP VECTORIZED.
  rttov_aitosu_ad.f90:494: note: LOOP VECTORIZED.
  rttov_aitosu_ad.f90:495: note: LOOP VECTORIZED.
- rttov_aitosu_ad.f90:603: note: LOOP VECTORIZED.
  rttov_aitosu_ad.f90:608: note: LOOP VECTORIZED.
  rttov_aitosu_ad.f90:609: note: LOOP VECTORIZED.
  rttov_aitosu_ad.f90:610: note: LOOP VECTORIZED.
  rttov_aitosu_ad.f90:611: note: LOOP VECTORIZED.
- rttov_aitosu.f90:132: note: LOOP VECTORIZED.
- rttov_aitosu.f90:133: note: LOOP VECTORIZED.
- rttov_aitosu.f90:134: note: LOOP VECTORIZED.
- rttov_aitosu.f90:136: note: LOOP VECTORIZED.
- rttov_aitosu.f90:189: note: LOOP VECTORIZED.
- rttov_aitosu.f90:190: note: LOOP VECTORIZED.
- rttov_aitosu.f90:191: note: LOOP VECTORIZED.
- rttov_aitosu.f90:193: note: LOOP VECTORIZED.
  rttov_aitosu_tl.f90:182: note: LOOP VECTORIZED.
  rttov_aitosu_tl.f90:183: note: LOOP VECTORIZED.
  rttov_aitosu_tl.f90:184: note: LOOP VECTORIZED.
--- 3915,3924 ----
*************** rttov_integratesource_ad.f90:108: note: 
*** 4187,4193 ****
  rttov_integratesource_ad.f90:128: note: LOOP VECTORIZED.
  rttov_integratesource_ad.f90:129: note: LOOP VECTORIZED.
  rttov_integratesource_ad.f90:130: note: LOOP VECTORIZED.
- rttov_integratesource_ad.f90:131: note: LOOP VECTORIZED.
  rttov_integratesource_ad.f90:132: note: LOOP VECTORIZED.
  rttov_integratesource_ad.f90:133: note: LOOP VECTORIZED.
  rttov_integratesource_ad.f90:134: note: LOOP VECTORIZED.
--- 4185,4190 ----
*************** rttov_intex_tl.f90:83: note: LOOP VECTOR
*** 4231,4236 ****
--- 4228,4234 ----
  rttov_intext_prof.f90:156: note: LOOP VECTORIZED.
  rttov_intext_prof.f90:186: note: LOOP VECTORIZED.
  rttov_intext_prof.f90:192: note: LOOP VECTORIZED.
+ rttov_intext_prof.f90:251: note: LOOP VECTORIZED.
  rttov_intext_prof.f90:253: note: LOOP VECTORIZED.
  rttov_intext_prof.f90:259: note: LOOP VECTORIZED.
  rttov_intext_prof.f90:273: note: LOOP VECTORIZED.
*************** rttov_k.f90:1096: note: LOOP VECTORIZED.
*** 4246,4257 ****
  rttov_k.f90:1106: note: LOOP VECTORIZED.
  rttov_k.f90:1123: note: LOOP VECTORIZED.
  rttov_k.f90:1166: note: LOOP VECTORIZED.
- rttov_k.f90:1213: note: LOOP VECTORIZED.
- rttov_k.f90:1234: note: LOOP VECTORIZED.
- rttov_k.f90:1246: note: LOOP VECTORIZED.
- rttov_k.f90:1258: note: LOOP VECTORIZED.
- rttov_k.f90:1267: note: LOOP VECTORIZED.
- rttov_k.f90:1326: note: LOOP VECTORIZED.
  rttov_k.f90:1381: note: LOOP VECTORIZED.
  rttov_k.f90:1403: note: LOOP VECTORIZED.
  rttov_k.f90:1413: note: LOOP VECTORIZED.
--- 4244,4249 ----
*************** signr.f:27: note: LOOP VECTORIZED.
*** 4647,4653 ****
  simconv.f90:379: note: LOOP VECTORIZED.
  simconv.f90:415: note: LOOP VECTORIZED.
  simload.f90:216: note: LOOP VECTORIZED.
- simobs_diagnose.f:11: note: LOOP VECTORIZED.
  sirhs.f:103: note: LOOP VECTORIZED.
  sirhs.f:184: note: LOOP VECTORIZED.
  sirhs.f:197: note: LOOP VECTORIZED.
--- 4639,4644 ----
*************** sposv.f:1197: note: LOOP VECTORIZED.
*** 4902,4924 ****
  sposv.f:1202: note: LOOP VECTORIZED.
  sposv.f:1204: note: LOOP VECTORIZED.
  sposv.f:1210: note: LOOP VECTORIZED.
- sposv.f:1212: note: LOOP VECTORIZED.
  sposv.f:1216: note: LOOP VECTORIZED.
- sposv.f:1218: note: LOOP VECTORIZED.
  sposv.f:1223: note: LOOP VECTORIZED.
- sposv.f:1225: note: LOOP VECTORIZED.
  sposv.f:1237: note: LOOP VECTORIZED.
- sposv.f:1239: note: LOOP VECTORIZED.
  sposv.f:1244: note: LOOP VECTORIZED.
- sposv.f:1246: note: LOOP VECTORIZED.
  sposv.f:1250: note: LOOP VECTORIZED.
- sposv.f:1252: note: LOOP VECTORIZED.
  sposv.f:1259: note: LOOP VECTORIZED.
- sposv.f:1261: note: LOOP VECTORIZED.
  sposv.f:1266: note: LOOP VECTORIZED.
- sposv.f:1268: note: LOOP VECTORIZED.
  sposv.f:1272: note: LOOP VECTORIZED.
- sposv.f:1274: note: LOOP VECTORIZED.
  sposv.f:792: note: LOOP VECTORIZED.
  sposv.f:794: note: LOOP VECTORIZED.
  sposv.f:798: note: LOOP VECTORIZED.
--- 4893,4906 ----
*************** ssyev.f:6339: note: LOOP VECTORIZED.
*** 5034,5050 ****
  ssyev.f:6358: note: LOOP VECTORIZED.
  ssyev.f:6358: note: LOOP VECTORIZED.
  ssyev.f:635: note: LOOP VECTORIZED.
- ssyev.f:635: note: LOOP VECTORIZED.
  ssyev.f:6363: note: LOOP VECTORIZED.
  ssyev.f:6363: note: LOOP VECTORIZED.
  ssyev.f:6408: note: LOOP VECTORIZED.
- ssyev.f:6408: note: LOOP VECTORIZED.
- ssyev.f:682: note: LOOP VECTORIZED.
  ssyev.f:682: note: LOOP VECTORIZED.
  ssyev.f:7075: note: LOOP VECTORIZED.
  ssyev.f:7075: note: LOOP VECTORIZED.
  ssyev.f:7338: note: LOOP VECTORIZED.
- ssyev.f:7338: note: LOOP VECTORIZED.
  ssyev.f:7718: note: LOOP VECTORIZED.
  ssyev.f:7718: note: LOOP VECTORIZED.
  ssyev.f:7722: note: LOOP VECTORIZED.
--- 5016,5028 ----
*************** ssyev.f:9234: note: LOOP VECTORIZED.
*** 5094,5100 ****
  ssyev.f:9243: note: LOOP VECTORIZED.
  ssyev.f:9243: note: LOOP VECTORIZED.
  ssyev.f:9426: note: LOOP VECTORIZED.
- ssyev.f:9426: note: LOOP VECTORIZED.
  ssyev.f:953: note: LOOP VECTORIZED.
  ssyev.f:953: note: LOOP VECTORIZED.
  ssyev.f:959: note: LOOP VECTORIZED.
--- 5072,5077 ----
*************** stamic.f:1458: note: LOOP VECTORIZED.
*** 5150,5156 ****
  stamic.f:1484: note: LOOP VECTORIZED.
  stamic.f:1509: note: LOOP VECTORIZED.
  stamic.f:1524: note: LOOP VECTORIZED.
- stamic.f:1537: note: LOOP VECTORIZED.
  stamic.f:1563: note: LOOP VECTORIZED.
  stamic.f:685: note: LOOP VECTORIZED.
  stamic.f:757: note: LOOP VECTORIZED.
--- 5127,5132 ----
*************** syminv.f:207: note: LOOP VECTORIZED.
*** 5327,5336 ****
--- 5303,5314 ----
  sync_timeslot_data.f90:326: note: LOOP VECTORIZED.
  sync_timeslot_data.f90:341: note: LOOP VECTORIZED.
  sync_timeslot_data.f90:434: note: LOOP VECTORIZED.
+ tables36.f:245: note: LOOP VECTORIZED.
  tables36.f:437: note: LOOP VECTORIZED.
  tables36.f:443: note: LOOP VECTORIZED.
  tables36.f:642: note: LOOP VECTORIZED.
  tables36.f:648: note: LOOP VECTORIZED.
+ tables.f:258: note: LOOP VECTORIZED.
  tables.f:455: note: LOOP VECTORIZED.
  tables.f:461: note: LOOP VECTORIZED.
  tables.f:660: note: LOOP VECTORIZED.

[-- Attachment #3: sposv.f --]
[-- Type: text/plain, Size: 39774 bytes --]







      SUBROUTINE SPOSV( UPLO, N, NRHS, A, LDA, B, LDB, INFO )
*
*  -- LAPACK driver routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     March 31, 1993 
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            INFO, LDA, LDB, N, NRHS
*     ..
*     .. Array Arguments ..
      REAL               A( LDA, * ), B( LDB, * )
*     ..
*
*  Purpose
*  =======
*
*  SPOSV computes the solution to a real system of linear equations
*     A * X = B,
*  where A is an N-by-N symmetric positive definite matrix and X and B
*  are N-by-NRHS matrices.
*
*  The Cholesky decomposition is used to factor A as
*     A = U**T* U,  if UPLO = 'U', or
*     A = L * L**T,  if UPLO = 'L',
*  where U is an upper triangular matrix and L is a lower triangular
*  matrix.  The factored form of A is then used to solve the system of
*  equations A * X = B.
*
*  Arguments
*  =========
*
*  UPLO    (input) CHARACTER*1
*          = 'U':  Upper triangle of A is stored;
*          = 'L':  Lower triangle of A is stored.
*
*  N       (input) INTEGER
*          The number of linear equations, i.e., the order of the
*          matrix A.  N >= 0.
*
*  NRHS    (input) INTEGER
*          The number of right hand sides, i.e., the number of columns
*          of the matrix B.  NRHS >= 0.
*
*  A       (input/output) REAL array, dimension (LDA,N)
*          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
*          N-by-N upper triangular part of A contains the upper
*          triangular part of the matrix A, and the strictly lower
*          triangular part of A is not referenced.  If UPLO = 'L', the
*          leading N-by-N lower triangular part of A contains the lower
*          triangular part of the matrix A, and the strictly upper
*          triangular part of A is not referenced.
*
*          On exit, if INFO = 0, the factor U or L from the Cholesky
*          factorization A = U**T*U or A = L*L**T.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N).
*
*  B       (input/output) REAL array, dimension (LDB,NRHS)
*          On entry, the N-by-NRHS right hand side matrix B.
*          On exit, if INFO = 0, the N-by-NRHS solution matrix X.
*
*  LDB     (input) INTEGER
*          The leading dimension of the array B.  LDB >= max(1,N).
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*          > 0:  if INFO = i, the leading minor of order i of A is not
*                positive definite, so the factorization could not be
*                completed, and the solution has not been computed.
*
*  =====================================================================
*
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           SPOTRF, SPOTRS, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( NRHS.LT.0 ) THEN
         INFO = -3
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -5
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -7
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SPOSV ', -INFO )
         RETURN
      END IF
*
*     Compute the Cholesky factorization A = U'*U or A = L*L'.
*
      CALL SPOTRF( UPLO, N, A, LDA, INFO )
      IF( INFO.EQ.0 ) THEN
*
*        Solve the system A*X = B, overwriting B with X.
*
         CALL SPOTRS( UPLO, N, NRHS, A, LDA, B, LDB, INFO )
*
      END IF
      RETURN
*
*     End of SPOSV
*
      END
      SUBROUTINE SPOTF2( UPLO, N, A, LDA, INFO )
*
*  -- LAPACK routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     February 29, 1992
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            INFO, LDA, N
*     ..
*     .. Array Arguments ..
      REAL               A( LDA, * )
*     ..
*
*  Purpose
*  =======
*
*  SPOTF2 computes the Cholesky factorization of a real symmetric
*  positive definite matrix A.
*
*  The factorization has the form
*     A = U' * U ,  if UPLO = 'U', or
*     A = L  * L',  if UPLO = 'L',
*  where U is an upper triangular matrix and L is lower triangular.
*
*  This is the unblocked version of the algorithm, calling Level 2 BLAS.
*
*  Arguments
*  =========
*
*  UPLO    (input) CHARACTER*1
*          Specifies whether the upper or lower triangular part of the
*          symmetric matrix A is stored.
*          = 'U':  Upper triangular
*          = 'L':  Lower triangular
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  A       (input/output) REAL array, dimension (LDA,N)
*          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
*          n by n upper triangular part of A contains the upper
*          triangular part of the matrix A, and the strictly lower
*          triangular part of A is not referenced.  If UPLO = 'L', the
*          leading n by n lower triangular part of A contains the lower
*          triangular part of the matrix A, and the strictly upper
*          triangular part of A is not referenced.
*
*          On exit, if INFO = 0, the factor U or L from the Cholesky
*          factorization A = U'*U  or A = L*L'.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N).
*
*  INFO    (output) INTEGER
*          = 0: successful exit
*          < 0: if INFO = -k, the k-th argument had an illegal value
*          > 0: if INFO = k, the leading minor of order k is not
*               positive definite, and the factorization could not be
*               completed.
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE, ZERO
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            UPPER
      INTEGER            J
      REAL               AJJ
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      REAL               SDOT
      EXTERNAL           LSAME, SDOT
*     ..
*     .. External Subroutines ..
      EXTERNAL           SGEMV, SSCAL, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, SQRT
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      UPPER = LSAME( UPLO, 'U' )
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -4
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SPOTF2', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
      IF( UPPER ) THEN
*
*        Compute the Cholesky factorization A = U'*U.
*
         DO 10 J = 1, N
*
*           Compute U(J,J) and test for non-positive-definiteness.
*
            AJJ = A( J, J ) - SDOT( J-1, A( 1, J ), 1, A( 1, J ), 1 )
            IF( AJJ.LE.ZERO ) THEN
               A( J, J ) = AJJ
               GO TO 30
            END IF
            AJJ = SQRT( AJJ )
            A( J, J ) = AJJ
*
*           Compute elements J+1:N of row J.
*
            IF( J.LT.N ) THEN
               CALL SGEMV( 'Transpose', J-1, N-J, -ONE, A( 1, J+1 ),
     $                     LDA, A( 1, J ), 1, ONE, A( J, J+1 ), LDA )
               CALL SSCAL( N-J, ONE / AJJ, A( J, J+1 ), LDA )
            END IF
   10    CONTINUE
      ELSE
*
*        Compute the Cholesky factorization A = L*L'.
*
         DO 20 J = 1, N
*
*           Compute L(J,J) and test for non-positive-definiteness.
*
            AJJ = A( J, J ) - SDOT( J-1, A( J, 1 ), LDA, A( J, 1 ),
     $            LDA )
            IF( AJJ.LE.ZERO ) THEN
               A( J, J ) = AJJ
               GO TO 30
            END IF
            AJJ = SQRT( AJJ )
            A( J, J ) = AJJ
*
*           Compute elements J+1:N of column J.
*
            IF( J.LT.N ) THEN
               CALL SGEMV( 'No transpose', N-J, J-1, -ONE, A( J+1, 1 ),
     $                     LDA, A( J, 1 ), LDA, ONE, A( J+1, J ), 1 )
               CALL SSCAL( N-J, ONE / AJJ, A( J+1, J ), 1 )
            END IF
   20    CONTINUE
      END IF
      GO TO 40
*
   30 CONTINUE
      INFO = J
*
   40 CONTINUE
      RETURN
*
*     End of SPOTF2
*
      END
      SUBROUTINE SPOTRF( UPLO, N, A, LDA, INFO )
*
*  -- LAPACK routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     March 31, 1993 
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            INFO, LDA, N
*     ..
*     .. Array Arguments ..
      REAL               A( LDA, * )
*     ..
*
*  Purpose
*  =======
*
*  SPOTRF computes the Cholesky factorization of a real symmetric
*  positive definite matrix A.
*
*  The factorization has the form
*     A = U**T * U,  if UPLO = 'U', or
*     A = L  * L**T,  if UPLO = 'L',
*  where U is an upper triangular matrix and L is lower triangular.
*
*  This is the block version of the algorithm, calling Level 3 BLAS.
*
*  Arguments
*  =========
*
*  UPLO    (input) CHARACTER*1
*          = 'U':  Upper triangle of A is stored;
*          = 'L':  Lower triangle of A is stored.
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  A       (input/output) REAL array, dimension (LDA,N)
*          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
*          N-by-N upper triangular part of A contains the upper
*          triangular part of the matrix A, and the strictly lower
*          triangular part of A is not referenced.  If UPLO = 'L', the
*          leading N-by-N lower triangular part of A contains the lower
*          triangular part of the matrix A, and the strictly upper
*          triangular part of A is not referenced.
*
*          On exit, if INFO = 0, the factor U or L from the Cholesky
*          factorization A = U**T*U or A = L*L**T.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N).
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*          > 0:  if INFO = i, the leading minor of order i is not
*                positive definite, and the factorization could not be
*                completed.
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE
      PARAMETER          ( ONE = 1.0E+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            UPPER
      INTEGER            J, JB, NB
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ILAENV
      EXTERNAL           LSAME, ILAENV
*     ..
*     .. External Subroutines ..
      EXTERNAL           SGEMM, SPOTF2, SSYRK, STRSM, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      UPPER = LSAME( UPLO, 'U' )
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -4
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SPOTRF', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
*     Determine the block size for this environment.
*
      NB = ILAENV( 1, 'SPOTRF', UPLO, N, -1, -1, -1 )
      IF( NB.LE.1 .OR. NB.GE.N ) THEN
*
*        Use unblocked code.
*
         CALL SPOTF2( UPLO, N, A, LDA, INFO )
      ELSE
*
*        Use blocked code.
*
         IF( UPPER ) THEN
*
*           Compute the Cholesky factorization A = U'*U.
*
            DO 10 J = 1, N, NB
*
*              Update and factorize the current diagonal block and test
*              for non-positive-definiteness.
*
               JB = MIN( NB, N-J+1 )
               CALL SSYRK( 'Upper', 'Transpose', JB, J-1, -ONE,
     $                     A( 1, J ), LDA, ONE, A( J, J ), LDA )
               CALL SPOTF2( 'Upper', JB, A( J, J ), LDA, INFO )
               IF( INFO.NE.0 )
     $            GO TO 30
               IF( J+JB.LE.N ) THEN
*
*                 Compute the current block row.
*
                  CALL SGEMM( 'Transpose', 'No transpose', JB, N-J-JB+1,
     $                        J-1, -ONE, A( 1, J ), LDA, A( 1, J+JB ),
     $                        LDA, ONE, A( J, J+JB ), LDA )
                  CALL STRSM( 'Left', 'Upper', 'Transpose', 'Non-unit',
     $                        JB, N-J-JB+1, ONE, A( J, J ), LDA,
     $                        A( J, J+JB ), LDA )
               END IF
   10       CONTINUE
*
         ELSE
*
*           Compute the Cholesky factorization A = L*L'.
*
            DO 20 J = 1, N, NB
*
*              Update and factorize the current diagonal block and test
*              for non-positive-definiteness.
*
               JB = MIN( NB, N-J+1 )
               CALL SSYRK( 'Lower', 'No transpose', JB, J-1, -ONE,
     $                     A( J, 1 ), LDA, ONE, A( J, J ), LDA )
               CALL SPOTF2( 'Lower', JB, A( J, J ), LDA, INFO )
               IF( INFO.NE.0 )
     $            GO TO 30
               IF( J+JB.LE.N ) THEN
*
*                 Compute the current block column.
*
                  CALL SGEMM( 'No transpose', 'Transpose', N-J-JB+1, JB,
     $                        J-1, -ONE, A( J+JB, 1 ), LDA, A( J, 1 ),
     $                        LDA, ONE, A( J+JB, J ), LDA )
                  CALL STRSM( 'Right', 'Lower', 'Transpose', 'Non-unit',
     $                        N-J-JB+1, JB, ONE, A( J, J ), LDA,
     $                        A( J+JB, J ), LDA )
               END IF
   20       CONTINUE
         END IF
      END IF
      GO TO 40
*
   30 CONTINUE
      INFO = INFO + J - 1
*
   40 CONTINUE
      RETURN
*
*     End of SPOTRF
*
      END
      SUBROUTINE SPOTRS( UPLO, N, NRHS, A, LDA, B, LDB, INFO )
*
*  -- LAPACK routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     March 31, 1993 
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            INFO, LDA, LDB, N, NRHS
*     ..
*     .. Array Arguments ..
      REAL               A( LDA, * ), B( LDB, * )
*     ..
*
*  Purpose
*  =======
*
*  SPOTRS solves a system of linear equations A*X = B with a symmetric
*  positive definite matrix A using the Cholesky factorization
*  A = U**T*U or A = L*L**T computed by SPOTRF.
*
*  Arguments
*  =========
*
*  UPLO    (input) CHARACTER*1
*          = 'U':  Upper triangle of A is stored;
*          = 'L':  Lower triangle of A is stored.
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  NRHS    (input) INTEGER
*          The number of right hand sides, i.e., the number of columns
*          of the matrix B.  NRHS >= 0.
*
*  A       (input) REAL array, dimension (LDA,N)
*          The triangular factor U or L from the Cholesky factorization
*          A = U**T*U or A = L*L**T, as computed by SPOTRF.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N).
*
*  B       (input/output) REAL array, dimension (LDB,NRHS)
*          On entry, the right hand side matrix B.
*          On exit, the solution matrix X.
*
*  LDB     (input) INTEGER
*          The leading dimension of the array B.  LDB >= max(1,N).
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE
      PARAMETER          ( ONE = 1.0E+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            UPPER
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           STRSM, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      UPPER = LSAME( UPLO, 'U' )
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( NRHS.LT.0 ) THEN
         INFO = -3
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -5
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -7
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SPOTRS', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 .OR. NRHS.EQ.0 )
     $   RETURN
*
      IF( UPPER ) THEN
*
*        Solve A*X = B where A = U'*U.
*
*        Solve U'*X = B, overwriting B with X.
*
         CALL STRSM( 'Left', 'Upper', 'Transpose', 'Non-unit', N, NRHS,
     $               ONE, A, LDA, B, LDB )
*
*        Solve U*X = B, overwriting B with X.
*
         CALL STRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', N,
     $               NRHS, ONE, A, LDA, B, LDB )
      ELSE
*
*        Solve A*X = B where A = L*L'.
*
*        Solve L*X = B, overwriting B with X.
*
         CALL STRSM( 'Left', 'Lower', 'No transpose', 'Non-unit', N,
     $               NRHS, ONE, A, LDA, B, LDB )
*
*        Solve L'*X = B, overwriting B with X.
*
         CALL STRSM( 'Left', 'Lower', 'Transpose', 'Non-unit', N, NRHS,
     $               ONE, A, LDA, B, LDB )
      END IF
*
      RETURN
*
*     End of SPOTRS
*
      END
      SUBROUTINE SSYRK ( UPLO, TRANS, N, K, ALPHA, A, LDA,
     $                   BETA, C, LDC )
*     .. Scalar Arguments ..
      CHARACTER*1        UPLO, TRANS
      INTEGER            N, K, LDA, LDC
      REAL               ALPHA, BETA
*     .. Array Arguments ..
      REAL               A( LDA, * ), C( LDC, * )
*     ..
*
*  Purpose
*  =======
*
*  SSYRK  performs one of the symmetric rank k operations
*
*     C := alpha*A*A' + beta*C,
*
*  or
*
*     C := alpha*A'*A + beta*C,
*
*  where  alpha and beta  are scalars, C is an  n by n  symmetric matrix
*  and  A  is an  n by k  matrix in the first case and a  k by n  matrix
*  in the second case.
*
*  Parameters
*  ==========
*
*  UPLO   - CHARACTER*1.
*           On  entry,   UPLO  specifies  whether  the  upper  or  lower
*           triangular  part  of the  array  C  is to be  referenced  as
*           follows:
*
*              UPLO = 'U' or 'u'   Only the  upper triangular part of  C
*                                  is to be referenced.
*
*              UPLO = 'L' or 'l'   Only the  lower triangular part of  C
*                                  is to be referenced.
*
*           Unchanged on exit.
*
*  TRANS  - CHARACTER*1.
*           On entry,  TRANS  specifies the operation to be performed as
*           follows:
*
*              TRANS = 'N' or 'n'   C := alpha*A*A' + beta*C.
*
*              TRANS = 'T' or 't'   C := alpha*A'*A + beta*C.
*
*              TRANS = 'C' or 'c'   C := alpha*A'*A + beta*C.
*
*           Unchanged on exit.
*
*  N      - INTEGER.
*           On entry,  N specifies the order of the matrix C.  N must be
*           at least zero.
*           Unchanged on exit.
*
*  K      - INTEGER.
*           On entry with  TRANS = 'N' or 'n',  K  specifies  the number
*           of  columns   of  the   matrix   A,   and  on   entry   with
*           TRANS = 'T' or 't' or 'C' or 'c',  K  specifies  the  number
*           of rows of the matrix  A.  K must be at least zero.
*           Unchanged on exit.
*
*  ALPHA  - REAL            .
*           On entry, ALPHA specifies the scalar alpha.
*           Unchanged on exit.
*
*  A      - REAL             array of DIMENSION ( LDA, ka ), where ka is
*           k  when  TRANS = 'N' or 'n',  and is  n  otherwise.
*           Before entry with  TRANS = 'N' or 'n',  the  leading  n by k
*           part of the array  A  must contain the matrix  A,  otherwise
*           the leading  k by n  part of the array  A  must contain  the
*           matrix A.
*           Unchanged on exit.
*
*  LDA    - INTEGER.
*           On entry, LDA specifies the first dimension of A as declared
*           in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n'
*           then  LDA must be at least  max( 1, n ), otherwise  LDA must
*           be at least  max( 1, k ).
*           Unchanged on exit.
*
*  BETA   - REAL            .
*           On entry, BETA specifies the scalar beta.
*           Unchanged on exit.
*
*  C      - REAL             array of DIMENSION ( LDC, n ).
*           Before entry  with  UPLO = 'U' or 'u',  the leading  n by n
*           upper triangular part of the array C must contain the upper
*           triangular part  of the  symmetric matrix  and the strictly
*           lower triangular part of C is not referenced.  On exit, the
*           upper triangular part of the array  C is overwritten by the
*           upper triangular part of the updated matrix.
*           Before entry  with  UPLO = 'L' or 'l',  the leading  n by n
*           lower triangular part of the array C must contain the lower
*           triangular part  of the  symmetric matrix  and the strictly
*           upper triangular part of C is not referenced.  On exit, the
*           lower triangular part of the array  C is overwritten by the
*           lower triangular part of the updated matrix.
*
*  LDC    - INTEGER.
*           On entry, LDC specifies the first dimension of C as declared
*           in  the  calling  (sub)  program.   LDC  must  be  at  least
*           max( 1, n ).
*           Unchanged on exit.
*
*
*  Level 3 Blas routine.
*
*  -- Written on 8-February-1989.
*     Jack Dongarra, Argonne National Laboratory.
*     Iain Duff, AERE Harwell.
*     Jeremy Du Croz, Numerical Algorithms Group Ltd.
*     Sven Hammarling, Numerical Algorithms Group Ltd.
*
*
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     .. Local Scalars ..
      LOGICAL            UPPER
      INTEGER            I, INFO, J, L, NROWA
      REAL               TEMP
*     .. Parameters ..
      REAL               ONE ,         ZERO
      PARAMETER        ( ONE = 1.0E+0, ZERO = 0.0E+0 )
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      IF( LSAME( TRANS, 'N' ) )THEN
         NROWA = N
      ELSE
         NROWA = K
      END IF
      UPPER = LSAME( UPLO, 'U' )
*
      INFO = 0
      IF(      ( .NOT.UPPER               ).AND.
     $         ( .NOT.LSAME( UPLO , 'L' ) )      )THEN
         INFO = 1
      ELSE IF( ( .NOT.LSAME( TRANS, 'N' ) ).AND.
     $         ( .NOT.LSAME( TRANS, 'T' ) ).AND.
     $         ( .NOT.LSAME( TRANS, 'C' ) )      )THEN
         INFO = 2
      ELSE IF( N  .LT.0               )THEN
         INFO = 3
      ELSE IF( K  .LT.0               )THEN
         INFO = 4
      ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN
         INFO = 7
      ELSE IF( LDC.LT.MAX( 1, N     ) )THEN
         INFO = 10
      END IF
      IF( INFO.NE.0 )THEN
         CALL XERBLA( 'SSYRK ', INFO )
         RETURN
      END IF
*
*     Quick return if possible.
*
      IF( ( N.EQ.0 ).OR.
     $    ( ( ( ALPHA.EQ.ZERO ).OR.( K.EQ.0 ) ).AND.( BETA.EQ.ONE ) ) )
     $   RETURN
*
*     And when  alpha.eq.zero.
*
      IF( ALPHA.EQ.ZERO )THEN
         IF( UPPER )THEN
            IF( BETA.EQ.ZERO )THEN
               DO 20, J = 1, N
                  DO 10, I = 1, J
                     C( I, J ) = ZERO
   10             CONTINUE
   20          CONTINUE
            ELSE
               DO 40, J = 1, N
                  DO 30, I = 1, J
                     C( I, J ) = BETA*C( I, J )
   30             CONTINUE
   40          CONTINUE
            END IF
         ELSE
            IF( BETA.EQ.ZERO )THEN
               DO 60, J = 1, N
                  DO 50, I = J, N
                     C( I, J ) = ZERO
   50             CONTINUE
   60          CONTINUE
            ELSE
               DO 80, J = 1, N
                  DO 70, I = J, N
                     C( I, J ) = BETA*C( I, J )
   70             CONTINUE
   80          CONTINUE
            END IF
         END IF
         RETURN
      END IF
*
*     Start the operations.
*
      IF( LSAME( TRANS, 'N' ) )THEN
*
*        Form  C := alpha*A*A' + beta*C.
*
         IF( UPPER )THEN
            DO 130, J = 1, N
               IF( BETA.EQ.ZERO )THEN
                  DO 90, I = 1, J
                     C( I, J ) = ZERO
   90             CONTINUE
               ELSE IF( BETA.NE.ONE )THEN
                  DO 100, I = 1, J
                     C( I, J ) = BETA*C( I, J )
  100             CONTINUE
               END IF
               DO 120, L = 1, K
                  IF( A( J, L ).NE.ZERO )THEN
                     TEMP = ALPHA*A( J, L )
                     DO 110, I = 1, J
                        C( I, J ) = C( I, J ) + TEMP*A( I, L )
  110                CONTINUE
                  END IF
  120          CONTINUE
  130       CONTINUE
         ELSE
            DO 180, J = 1, N
               IF( BETA.EQ.ZERO )THEN
                  DO 140, I = J, N
                     C( I, J ) = ZERO
  140             CONTINUE
               ELSE IF( BETA.NE.ONE )THEN
                  DO 150, I = J, N
                     C( I, J ) = BETA*C( I, J )
  150             CONTINUE
               END IF
               DO 170, L = 1, K
                  IF( A( J, L ).NE.ZERO )THEN
                     TEMP      = ALPHA*A( J, L )
                     DO 160, I = J, N
                        C( I, J ) = C( I, J ) + TEMP*A( I, L )
  160                CONTINUE
                  END IF
  170          CONTINUE
  180       CONTINUE
         END IF
      ELSE
*
*        Form  C := alpha*A'*A + beta*C.
*
         IF( UPPER )THEN
            DO 210, J = 1, N
               DO 200, I = 1, J
                  TEMP = ZERO
                  DO 190, L = 1, K
                     TEMP = TEMP + A( L, I )*A( L, J )
  190             CONTINUE
                  IF( BETA.EQ.ZERO )THEN
                     C( I, J ) = ALPHA*TEMP
                  ELSE
                     C( I, J ) = ALPHA*TEMP + BETA*C( I, J )
                  END IF
  200          CONTINUE
  210       CONTINUE
         ELSE
            DO 240, J = 1, N
               DO 230, I = J, N
                  TEMP = ZERO
                  DO 220, L = 1, K
                     TEMP = TEMP + A( L, I )*A( L, J )
  220             CONTINUE
                  IF( BETA.EQ.ZERO )THEN
                     C( I, J ) = ALPHA*TEMP
                  ELSE
                     C( I, J ) = ALPHA*TEMP + BETA*C( I, J )
                  END IF
  230          CONTINUE
  240       CONTINUE
         END IF
      END IF
*
      RETURN
*
*     End of SSYRK .
*
      END
      SUBROUTINE STRSM ( SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA,
     $                   B, LDB )
*     .. Scalar Arguments ..
      CHARACTER*1        SIDE, UPLO, TRANSA, DIAG
      INTEGER            M, N, LDA, LDB
      REAL               ALPHA
*     .. Array Arguments ..
      REAL               A( LDA, * ), B( LDB, * )
*     ..
*
*  Purpose
*  =======
*
*  STRSM  solves one of the matrix equations
*
*     op( A )*X = alpha*B,   or   X*op( A ) = alpha*B,
*
*  where alpha is a scalar, X and B are m by n matrices, A is a unit, or
*  non-unit,  upper or lower triangular matrix  and  op( A )  is one  of
*
*     op( A ) = A   or   op( A ) = A'.
*
*  The matrix X is overwritten on B.
*
*  Parameters
*  ==========
*
*  SIDE   - CHARACTER*1.
*           On entry, SIDE specifies whether op( A ) appears on the left
*           or right of X as follows:
*
*              SIDE = 'L' or 'l'   op( A )*X = alpha*B.
*
*              SIDE = 'R' or 'r'   X*op( A ) = alpha*B.
*
*           Unchanged on exit.
*
*  UPLO   - CHARACTER*1.
*           On entry, UPLO specifies whether the matrix A is an upper or
*           lower triangular matrix as follows:
*
*              UPLO = 'U' or 'u'   A is an upper triangular matrix.
*
*              UPLO = 'L' or 'l'   A is a lower triangular matrix.
*
*           Unchanged on exit.
*
*  TRANSA - CHARACTER*1.
*           On entry, TRANSA specifies the form of op( A ) to be used in
*           the matrix multiplication as follows:
*
*              TRANSA = 'N' or 'n'   op( A ) = A.
*
*              TRANSA = 'T' or 't'   op( A ) = A'.
*
*              TRANSA = 'C' or 'c'   op( A ) = A'.
*
*           Unchanged on exit.
*
*  DIAG   - CHARACTER*1.
*           On entry, DIAG specifies whether or not A is unit triangular
*           as follows:
*
*              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
*
*              DIAG = 'N' or 'n'   A is not assumed to be unit
*                                  triangular.
*
*           Unchanged on exit.
*
*  M      - INTEGER.
*           On entry, M specifies the number of rows of B. M must be at
*           least zero.
*           Unchanged on exit.
*
*  N      - INTEGER.
*           On entry, N specifies the number of columns of B.  N must be
*           at least zero.
*           Unchanged on exit.
*
*  ALPHA  - REAL            .
*           On entry,  ALPHA specifies the scalar  alpha. When  alpha is
*           zero then  A is not referenced and  B need not be set before
*           entry.
*           Unchanged on exit.
*
*  A      - REAL             array of DIMENSION ( LDA, k ), where k is m
*           when  SIDE = 'L' or 'l'  and is  n  when  SIDE = 'R' or 'r'.
*           Before entry  with  UPLO = 'U' or 'u',  the  leading  k by k
*           upper triangular part of the array  A must contain the upper
*           triangular matrix  and the strictly lower triangular part of
*           A is not referenced.
*           Before entry  with  UPLO = 'L' or 'l',  the  leading  k by k
*           lower triangular part of the array  A must contain the lower
*           triangular matrix  and the strictly upper triangular part of
*           A is not referenced.
*           Note that when  DIAG = 'U' or 'u',  the diagonal elements of
*           A  are not referenced either,  but are assumed to be  unity.
*           Unchanged on exit.
*
*  LDA    - INTEGER.
*           On entry, LDA specifies the first dimension of A as declared
*           in the calling (sub) program.  When  SIDE = 'L' or 'l'  then
*           LDA  must be at least  max( 1, m ),  when  SIDE = 'R' or 'r'
*           then LDA must be at least max( 1, n ).
*           Unchanged on exit.
*
*  B      - REAL             array of DIMENSION ( LDB, n ).
*           Before entry,  the leading  m by n part of the array  B must
*           contain  the  right-hand  side  matrix  B,  and  on exit  is
*           overwritten by the solution matrix  X.
*
*  LDB    - INTEGER.
*           On entry, LDB specifies the first dimension of B as declared
*           in  the  calling  (sub)  program.   LDB  must  be  at  least
*           max( 1, m ).
*           Unchanged on exit.
*
*
*  Level 3 Blas routine.
*
*
*  -- Written on 8-February-1989.
*     Jack Dongarra, Argonne National Laboratory.
*     Iain Duff, AERE Harwell.
*     Jeremy Du Croz, Numerical Algorithms Group Ltd.
*     Sven Hammarling, Numerical Algorithms Group Ltd.
*
*
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     .. Local Scalars ..
      LOGICAL            LSIDE, NOUNIT, UPPER
      INTEGER            I, INFO, J, K, NROWA
      REAL               TEMP
*     .. Parameters ..
      REAL               ONE         , ZERO
      PARAMETER        ( ONE = 1.0E+0, ZERO = 0.0E+0 )
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      LSIDE  = LSAME( SIDE  , 'L' )
      IF( LSIDE )THEN
         NROWA = M
      ELSE
         NROWA = N
      END IF
      NOUNIT = LSAME( DIAG  , 'N' )
      UPPER  = LSAME( UPLO  , 'U' )
*
      INFO   = 0
      IF(      ( .NOT.LSIDE                ).AND.
     $         ( .NOT.LSAME( SIDE  , 'R' ) )      )THEN
         INFO = 1
      ELSE IF( ( .NOT.UPPER                ).AND.
     $         ( .NOT.LSAME( UPLO  , 'L' ) )      )THEN
         INFO = 2
      ELSE IF( ( .NOT.LSAME( TRANSA, 'N' ) ).AND.
     $         ( .NOT.LSAME( TRANSA, 'T' ) ).AND.
     $         ( .NOT.LSAME( TRANSA, 'C' ) )      )THEN
         INFO = 3
      ELSE IF( ( .NOT.LSAME( DIAG  , 'U' ) ).AND.
     $         ( .NOT.LSAME( DIAG  , 'N' ) )      )THEN
         INFO = 4
      ELSE IF( M  .LT.0               )THEN
         INFO = 5
      ELSE IF( N  .LT.0               )THEN
         INFO = 6
      ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN
         INFO = 9
      ELSE IF( LDB.LT.MAX( 1, M     ) )THEN
         INFO = 11
      END IF
      IF( INFO.NE.0 )THEN
         CALL XERBLA( 'STRSM ', INFO )
         RETURN
      END IF
*
*     Quick return if possible.
*
      IF( N.EQ.0 )
     $   RETURN
*
*     And when  alpha.eq.zero.
*
      IF( ALPHA.EQ.ZERO )THEN
         DO 20, J = 1, N
            DO 10, I = 1, M
               B( I, J ) = ZERO
   10       CONTINUE
   20    CONTINUE
         RETURN
      END IF
*
*     Start the operations.
*
      IF( LSIDE )THEN
         IF( LSAME( TRANSA, 'N' ) )THEN
*
*           Form  B := alpha*inv( A )*B.
*
            IF( UPPER )THEN
               DO 60, J = 1, N
                  IF( ALPHA.NE.ONE )THEN
                     DO 30, I = 1, M
                        B( I, J ) = ALPHA*B( I, J )
   30                CONTINUE
                  END IF
                  DO 50, K = M, 1, -1
                     IF( B( K, J ).NE.ZERO )THEN
                        IF( NOUNIT )
     $                     B( K, J ) = B( K, J )/A( K, K )
                        DO 40, I = 1, K - 1
                           B( I, J ) = B( I, J ) - B( K, J )*A( I, K )
   40                   CONTINUE
                     END IF
   50             CONTINUE
   60          CONTINUE
            ELSE
               DO 100, J = 1, N
                  IF( ALPHA.NE.ONE )THEN
                     DO 70, I = 1, M
                        B( I, J ) = ALPHA*B( I, J )
   70                CONTINUE
                  END IF
                  DO 90 K = 1, M
                     IF( B( K, J ).NE.ZERO )THEN
                        IF( NOUNIT )
     $                     B( K, J ) = B( K, J )/A( K, K )
                        DO 80, I = K + 1, M
                           B( I, J ) = B( I, J ) - B( K, J )*A( I, K )
   80                   CONTINUE
                     END IF
   90             CONTINUE
  100          CONTINUE
            END IF
         ELSE
*
*           Form  B := alpha*inv( A' )*B.
*
            IF( UPPER )THEN
               DO 130, J = 1, N
                  DO 120, I = 1, M
                     TEMP = ALPHA*B( I, J )
                     DO 110, K = 1, I - 1
                        TEMP = TEMP - A( K, I )*B( K, J )
  110                CONTINUE
                     IF( NOUNIT )
     $                  TEMP = TEMP/A( I, I )
                     B( I, J ) = TEMP
  120             CONTINUE
  130          CONTINUE
            ELSE
               DO 160, J = 1, N
                  DO 150, I = M, 1, -1
                     TEMP = ALPHA*B( I, J )
                     DO 140, K = I + 1, M
                        TEMP = TEMP - A( K, I )*B( K, J )
  140                CONTINUE
                     IF( NOUNIT )
     $                  TEMP = TEMP/A( I, I )
                     B( I, J ) = TEMP
  150             CONTINUE
  160          CONTINUE
            END IF
         END IF
      ELSE
         IF( LSAME( TRANSA, 'N' ) )THEN
*
*           Form  B := alpha*B*inv( A ).
*
            IF( UPPER )THEN
               DO 210, J = 1, N
                  IF( ALPHA.NE.ONE )THEN
                     DO 170, I = 1, M
                        B( I, J ) = ALPHA*B( I, J )
  170                CONTINUE
                  END IF
                  DO 190, K = 1, J - 1
                     IF( A( K, J ).NE.ZERO )THEN
                        DO 180, I = 1, M
                           B( I, J ) = B( I, J ) - A( K, J )*B( I, K )
  180                   CONTINUE
                     END IF
  190             CONTINUE
                  IF( NOUNIT )THEN
                     TEMP = ONE/A( J, J )
                     DO 200, I = 1, M
                        B( I, J ) = TEMP*B( I, J )
  200                CONTINUE
                  END IF
  210          CONTINUE
            ELSE
               DO 260, J = N, 1, -1
                  IF( ALPHA.NE.ONE )THEN
                     DO 220, I = 1, M
                        B( I, J ) = ALPHA*B( I, J )
  220                CONTINUE
                  END IF
                  DO 240, K = J + 1, N
                     IF( A( K, J ).NE.ZERO )THEN
                        DO 230, I = 1, M
                           B( I, J ) = B( I, J ) - A( K, J )*B( I, K )
  230                   CONTINUE
                     END IF
  240             CONTINUE
                  IF( NOUNIT )THEN
                     TEMP = ONE/A( J, J )
                     DO 250, I = 1, M
                       B( I, J ) = TEMP*B( I, J )
  250                CONTINUE
                  END IF
  260          CONTINUE
            END IF
         ELSE
*
*           Form  B := alpha*B*inv( A' ).
*
            IF( UPPER )THEN
               DO 310, K = N, 1, -1
                  IF( NOUNIT )THEN
                     TEMP = ONE/A( K, K )
                     DO 270, I = 1, M
                        B( I, K ) = TEMP*B( I, K )
  270                CONTINUE
                  END IF
                  DO 290, J = 1, K - 1
                     IF( A( J, K ).NE.ZERO )THEN
                        TEMP = A( J, K )
                        DO 280, I = 1, M
                           B( I, J ) = B( I, J ) - TEMP*B( I, K )
  280                   CONTINUE
                     END IF
  290             CONTINUE
                  IF( ALPHA.NE.ONE )THEN
                     DO 300, I = 1, M
                        B( I, K ) = ALPHA*B( I, K )
  300                CONTINUE
                  END IF
  310          CONTINUE
            ELSE
               DO 360, K = 1, N
                  IF( NOUNIT )THEN
                     TEMP = ONE/A( K, K )
                     DO 320, I = 1, M
                        B( I, K ) = TEMP*B( I, K )
  320                CONTINUE
                  END IF
                  DO 340, J = K + 1, N
                     IF( A( J, K ).NE.ZERO )THEN
                        TEMP = A( J, K )
                        DO 330, I = 1, M
                           B( I, J ) = B( I, J ) - TEMP*B( I, K )
  330                   CONTINUE
                     END IF
  340             CONTINUE
                  IF( ALPHA.NE.ONE )THEN
                     DO 350, I = 1, M
                        B( I, K ) = ALPHA*B( I, K )
  350                CONTINUE
                  END IF
  360          CONTINUE
            END IF
         END IF
      END IF
*
      RETURN
*
*     End of STRSM .
*
      END

[-- Attachment #4: ssyev.f --]
[-- Type: text/plain, Size: 283213 bytes --]







      INTEGER          FUNCTION ILAENV( ISPEC, NAME, OPTS, N1, N2, N3,
     $                 N4 )
*
*  -- LAPACK auxiliary routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      CHARACTER*( * )    NAME, OPTS
      INTEGER            ISPEC, N1, N2, N3, N4
*     ..
*
*  Purpose
*  =======
*
*  ILAENV is called from the LAPACK routines to choose problem-dependent
*  parameters for the local environment.  See ISPEC for a description of
*  the parameters.
*
*  This version provides a set of parameters which should give good,
*  but not optimal, performance on many of the currently available
*  computers.  Users are encouraged to modify this subroutine to set
*  the tuning parameters for their particular machine using the option
*  and problem size information in the arguments.
*
*  This routine will not function correctly if it is converted to all
*  lower case.  Converting it to all upper case is allowed.
*
*  Arguments
*  =========
*
*  ISPEC   (input) INTEGER
*          Specifies the parameter to be returned as the value of
*          ILAENV.
*          = 1: the optimal blocksize; if this value is 1, an unblocked
*               algorithm will give the best performance.
*          = 2: the minimum block size for which the block routine
*               should be used; if the usable block size is less than
*               this value, an unblocked routine should be used.
*          = 3: the crossover point (in a block routine, for N less
*               than this value, an unblocked routine should be used)
*          = 4: the number of shifts, used in the nonsymmetric
*               eigenvalue routines
*          = 5: the minimum column dimension for blocking to be used;
*               rectangular blocks must have dimension at least k by m,
*               where k is given by ILAENV(2,...) and m by ILAENV(5,...)
*          = 6: the crossover point for the SVD (when reducing an m by n
*               matrix to bidiagonal form, if max(m,n)/min(m,n) exceeds
*               this value, a QR factorization is used first to reduce
*               the matrix to a triangular form.)
*          = 7: the number of processors
*          = 8: the crossover point for the multishift QR and QZ methods
*               for nonsymmetric eigenvalue problems.
*
*  NAME    (input) CHARACTER*(*)
*          The name of the calling subroutine, in either upper case or
*          lower case.
*
*  OPTS    (input) CHARACTER*(*)
*          The character options to the subroutine NAME, concatenated
*          into a single character string.  For example, UPLO = 'U',
*          TRANS = 'T', and DIAG = 'N' for a triangular routine would
*          be specified as OPTS = 'UTN'.
*
*  N1      (input) INTEGER
*  N2      (input) INTEGER
*  N3      (input) INTEGER
*  N4      (input) INTEGER
*          Problem dimensions for the subroutine NAME; these may not all
*          be required.
*
* (ILAENV) (output) INTEGER
*          >= 0: the value of the parameter specified by ISPEC
*          < 0:  if ILAENV = -k, the k-th argument had an illegal value.
*
*  Further Details
*  ===============
*
*  The following conventions have been used when calling ILAENV from the
*  LAPACK routines:
*  1)  OPTS is a concatenation of all of the character options to
*      subroutine NAME, in the same order that they appear in the
*      argument list for NAME, even if they are not used in determining
*      the value of the parameter specified by ISPEC.
*  2)  The problem dimensions N1, N2, N3, N4 are specified in the order
*      that they appear in the argument list for NAME.  N1 is used
*      first, N2 second, and so on, and unused problem dimensions are
*      passed a value of -1.
*  3)  The parameter value returned by ILAENV is checked for validity in
*      the calling subroutine.  For example, ILAENV is used to retrieve
*      the optimal blocksize for STRTRI as follows:
*
*      NB = ILAENV( 1, 'STRTRI', UPLO // DIAG, N, -1, -1, -1 )
*      IF( NB.LE.1 ) NB = MAX( 1, N )
*
*  =====================================================================
*
*     .. Local Scalars ..
      LOGICAL            CNAME, SNAME
      CHARACTER*1        C1
      CHARACTER*2        C2, C4
      CHARACTER*3        C3
      CHARACTER*6        SUBNAM
      INTEGER            I, IC, IZ, NB, NBMIN, NX
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          CHAR, ICHAR, INT, MIN, REAL
*     ..
*     .. Executable Statements ..
*
      GO TO ( 100, 100, 100, 400, 500, 600, 700, 800 ) ISPEC
*
*     Invalid value for ISPEC
*
      ILAENV = -1
      RETURN
*
  100 CONTINUE
*
*     Convert NAME to upper case if the first character is lower case.
*
      ILAENV = 1
      SUBNAM = NAME
      IC = ICHAR( SUBNAM( 1:1 ) )
      IZ = ICHAR( 'Z' )
      IF( IZ.EQ.90 .OR. IZ.EQ.122 ) THEN
*
*        ASCII character set
*
         IF( IC.GE.97 .AND. IC.LE.122 ) THEN
            SUBNAM( 1:1 ) = CHAR( IC-32 )
            DO 10 I = 2, 6
               IC = ICHAR( SUBNAM( I:I ) )
               IF( IC.GE.97 .AND. IC.LE.122 )
     $            SUBNAM( I:I ) = CHAR( IC-32 )
   10       CONTINUE
         END IF
*
      ELSE IF( IZ.EQ.233 .OR. IZ.EQ.169 ) THEN
*
*        EBCDIC character set
*
         IF( ( IC.GE.129 .AND. IC.LE.137 ) .OR.
     $       ( IC.GE.145 .AND. IC.LE.153 ) .OR.
     $       ( IC.GE.162 .AND. IC.LE.169 ) ) THEN
            SUBNAM( 1:1 ) = CHAR( IC+64 )
            DO 20 I = 2, 6
               IC = ICHAR( SUBNAM( I:I ) )
               IF( ( IC.GE.129 .AND. IC.LE.137 ) .OR.
     $             ( IC.GE.145 .AND. IC.LE.153 ) .OR.
     $             ( IC.GE.162 .AND. IC.LE.169 ) )
     $            SUBNAM( I:I ) = CHAR( IC+64 )
   20       CONTINUE
         END IF
*
      ELSE IF( IZ.EQ.218 .OR. IZ.EQ.250 ) THEN
*
*        Prime machines:  ASCII+128
*
         IF( IC.GE.225 .AND. IC.LE.250 ) THEN
            SUBNAM( 1:1 ) = CHAR( IC-32 )
            DO 30 I = 2, 6
               IC = ICHAR( SUBNAM( I:I ) )
               IF( IC.GE.225 .AND. IC.LE.250 )
     $            SUBNAM( I:I ) = CHAR( IC-32 )
   30       CONTINUE
         END IF
      END IF
*
      C1 = SUBNAM( 1:1 )
      SNAME = C1.EQ.'S' .OR. C1.EQ.'D'
      CNAME = C1.EQ.'C' .OR. C1.EQ.'Z'
      IF( .NOT.( CNAME .OR. SNAME ) )
     $   RETURN
      C2 = SUBNAM( 2:3 )
      C3 = SUBNAM( 4:6 )
      C4 = C3( 2:3 )
*
      GO TO ( 110, 200, 300 ) ISPEC
*
  110 CONTINUE
*
*     ISPEC = 1:  block size
*
*     In these examples, separate code is provided for setting NB for
*     real and complex.  We assume that NB will take the same value in
*     single or double precision.
*
      NB = 1
*
      IF( C2.EQ.'GE' ) THEN
         IF( C3.EQ.'TRF' ) THEN
            IF( SNAME ) THEN
               NB = 64
            ELSE
               NB = 64
            END IF
         ELSE IF( C3.EQ.'QRF' .OR. C3.EQ.'RQF' .OR. C3.EQ.'LQF' .OR.
     $            C3.EQ.'QLF' ) THEN
            IF( SNAME ) THEN
               NB = 32
            ELSE
               NB = 32
            END IF
         ELSE IF( C3.EQ.'HRD' ) THEN
            IF( SNAME ) THEN
               NB = 32
            ELSE
               NB = 32
            END IF
         ELSE IF( C3.EQ.'BRD' ) THEN
            IF( SNAME ) THEN
               NB = 32
            ELSE
               NB = 32
            END IF
         ELSE IF( C3.EQ.'TRI' ) THEN
            IF( SNAME ) THEN
               NB = 64
            ELSE
               NB = 64
            END IF
         END IF
      ELSE IF( C2.EQ.'PO' ) THEN
         IF( C3.EQ.'TRF' ) THEN
            IF( SNAME ) THEN
               NB = 64
            ELSE
               NB = 64
            END IF
         END IF
      ELSE IF( C2.EQ.'SY' ) THEN
         IF( C3.EQ.'TRF' ) THEN
            IF( SNAME ) THEN
               NB = 64
            ELSE
               NB = 64
            END IF
         ELSE IF( SNAME .AND. C3.EQ.'TRD' ) THEN
            NB = 1
         ELSE IF( SNAME .AND. C3.EQ.'GST' ) THEN
            NB = 64
         END IF
      ELSE IF( CNAME .AND. C2.EQ.'HE' ) THEN
         IF( C3.EQ.'TRF' ) THEN
            NB = 64
         ELSE IF( C3.EQ.'TRD' ) THEN
            NB = 1
         ELSE IF( C3.EQ.'GST' ) THEN
            NB = 64
         END IF
      ELSE IF( SNAME .AND. C2.EQ.'OR' ) THEN
         IF( C3( 1:1 ).EQ.'G' ) THEN
            IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR.
     $          C4.EQ.'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR.
     $          C4.EQ.'BR' ) THEN
               NB = 32
            END IF
         ELSE IF( C3( 1:1 ).EQ.'M' ) THEN
            IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR.
     $          C4.EQ.'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR.
     $          C4.EQ.'BR' ) THEN
               NB = 32
            END IF
         END IF
      ELSE IF( CNAME .AND. C2.EQ.'UN' ) THEN
         IF( C3( 1:1 ).EQ.'G' ) THEN
            IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR.
     $          C4.EQ.'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR.
     $          C4.EQ.'BR' ) THEN
               NB = 32
            END IF
         ELSE IF( C3( 1:1 ).EQ.'M' ) THEN
            IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR.
     $          C4.EQ.'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR.
     $          C4.EQ.'BR' ) THEN
               NB = 32
            END IF
         END IF
      ELSE IF( C2.EQ.'GB' ) THEN
         IF( C3.EQ.'TRF' ) THEN
            IF( SNAME ) THEN
               IF( N4.LE.64 ) THEN
                  NB = 1
               ELSE
                  NB = 32
               END IF
            ELSE
               IF( N4.LE.64 ) THEN
                  NB = 1
               ELSE
                  NB = 32
               END IF
            END IF
         END IF
      ELSE IF( C2.EQ.'PB' ) THEN
         IF( C3.EQ.'TRF' ) THEN
            IF( SNAME ) THEN
               IF( N2.LE.64 ) THEN
                  NB = 1
               ELSE
                  NB = 32
               END IF
            ELSE
               IF( N2.LE.64 ) THEN
                  NB = 1
               ELSE
                  NB = 32
               END IF
            END IF
         END IF
      ELSE IF( C2.EQ.'TR' ) THEN
         IF( C3.EQ.'TRI' ) THEN
            IF( SNAME ) THEN
               NB = 64
            ELSE
               NB = 64
            END IF
         END IF
      ELSE IF( C2.EQ.'LA' ) THEN
         IF( C3.EQ.'UUM' ) THEN
            IF( SNAME ) THEN
               NB = 64
            ELSE
               NB = 64
            END IF
         END IF
      ELSE IF( SNAME .AND. C2.EQ.'ST' ) THEN
         IF( C3.EQ.'EBZ' ) THEN
            NB = 1
         END IF
      END IF
      ILAENV = NB
      RETURN
*
  200 CONTINUE
*
*     ISPEC = 2:  minimum block size
*
      NBMIN = 2
      IF( C2.EQ.'GE' ) THEN
         IF( C3.EQ.'QRF' .OR. C3.EQ.'RQF' .OR. C3.EQ.'LQF' .OR.
     $       C3.EQ.'QLF' ) THEN
            IF( SNAME ) THEN
               NBMIN = 2
            ELSE
               NBMIN = 2
            END IF
         ELSE IF( C3.EQ.'HRD' ) THEN
            IF( SNAME ) THEN
               NBMIN = 2
            ELSE
               NBMIN = 2
            END IF
         ELSE IF( C3.EQ.'BRD' ) THEN
            IF( SNAME ) THEN
               NBMIN = 2
            ELSE
               NBMIN = 2
            END IF
         ELSE IF( C3.EQ.'TRI' ) THEN
            IF( SNAME ) THEN
               NBMIN = 2
            ELSE
               NBMIN = 2
            END IF
         END IF
      ELSE IF( C2.EQ.'SY' ) THEN
         IF( C3.EQ.'TRF' ) THEN
            IF( SNAME ) THEN
               NBMIN = 8
            ELSE
               NBMIN = 8
            END IF
         ELSE IF( SNAME .AND. C3.EQ.'TRD' ) THEN
            NBMIN = 2
         END IF
      ELSE IF( CNAME .AND. C2.EQ.'HE' ) THEN
         IF( C3.EQ.'TRD' ) THEN
            NBMIN = 2
         END IF
      ELSE IF( SNAME .AND. C2.EQ.'OR' ) THEN
         IF( C3( 1:1 ).EQ.'G' ) THEN
            IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR.
     $          C4.EQ.'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR.
     $          C4.EQ.'BR' ) THEN
               NBMIN = 2
            END IF
         ELSE IF( C3( 1:1 ).EQ.'M' ) THEN
            IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR.
     $          C4.EQ.'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR.
     $          C4.EQ.'BR' ) THEN
               NBMIN = 2
            END IF
         END IF
      ELSE IF( CNAME .AND. C2.EQ.'UN' ) THEN
         IF( C3( 1:1 ).EQ.'G' ) THEN
            IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR.
     $          C4.EQ.'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR.
     $          C4.EQ.'BR' ) THEN
               NBMIN = 2
            END IF
         ELSE IF( C3( 1:1 ).EQ.'M' ) THEN
            IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR.
     $          C4.EQ.'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR.
     $          C4.EQ.'BR' ) THEN
               NBMIN = 2
            END IF
         END IF
      END IF
      ILAENV = NBMIN
      RETURN
*
  300 CONTINUE
*
*     ISPEC = 3:  crossover point
*
      NX = 0
      IF( C2.EQ.'GE' ) THEN
         IF( C3.EQ.'QRF' .OR. C3.EQ.'RQF' .OR. C3.EQ.'LQF' .OR.
     $       C3.EQ.'QLF' ) THEN
            IF( SNAME ) THEN
               NX = 128
            ELSE
               NX = 128
            END IF
         ELSE IF( C3.EQ.'HRD' ) THEN
            IF( SNAME ) THEN
               NX = 128
            ELSE
               NX = 128
            END IF
         ELSE IF( C3.EQ.'BRD' ) THEN
            IF( SNAME ) THEN
               NX = 128
            ELSE
               NX = 128
            END IF
         END IF
      ELSE IF( C2.EQ.'SY' ) THEN
         IF( SNAME .AND. C3.EQ.'TRD' ) THEN
            NX = 1
         END IF
      ELSE IF( CNAME .AND. C2.EQ.'HE' ) THEN
         IF( C3.EQ.'TRD' ) THEN
            NX = 1
         END IF
      ELSE IF( SNAME .AND. C2.EQ.'OR' ) THEN
         IF( C3( 1:1 ).EQ.'G' ) THEN
            IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR.
     $          C4.EQ.'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR.
     $          C4.EQ.'BR' ) THEN
               NX = 128
            END IF
         END IF
      ELSE IF( CNAME .AND. C2.EQ.'UN' ) THEN
         IF( C3( 1:1 ).EQ.'G' ) THEN
            IF( C4.EQ.'QR' .OR. C4.EQ.'RQ' .OR. C4.EQ.'LQ' .OR.
     $          C4.EQ.'QL' .OR. C4.EQ.'HR' .OR. C4.EQ.'TR' .OR.
     $          C4.EQ.'BR' ) THEN
               NX = 128
            END IF
         END IF
      END IF
      ILAENV = NX
      RETURN
*
  400 CONTINUE
*
*     ISPEC = 4:  number of shifts (used by xHSEQR)
*
      ILAENV = 6
      RETURN
*
  500 CONTINUE
*
*     ISPEC = 5:  minimum column dimension (not used)
*
      ILAENV = 2
      RETURN
*
  600 CONTINUE 
*
*     ISPEC = 6:  crossover point for SVD (used by xGELSS and xGESVD)
*
      ILAENV = INT( REAL( MIN( N1, N2 ) )*1.6E0 )
      RETURN
*
  700 CONTINUE
*
*     ISPEC = 7:  number of processors (not used)
*
      ILAENV = 1
      RETURN
*
  800 CONTINUE
*
*     ISPEC = 8:  crossover point for multishift (used by xHSEQR)
*
      ILAENV = 50
      RETURN
*
*     End of ILAENV
*
      END
      LOGICAL          FUNCTION LSAME( CA, CB )
*
*  -- LAPACK auxiliary routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      CHARACTER          CA, CB
*     ..
*
*  Purpose
*  =======
*
*  LSAME returns .TRUE. if CA is the same letter as CB regardless of
*  case.
*
*  Arguments
*  =========
*
*  CA      (input) CHARACTER*1
*  CB      (input) CHARACTER*1
*          CA and CB specify the single characters to be compared.
*
* =====================================================================
*
*     .. Intrinsic Functions ..
      INTRINSIC          ICHAR
*     ..
*     .. Local Scalars ..
      INTEGER            INTA, INTB, ZCODE
*     ..
*     .. Executable Statements ..
*
*     Test if the characters are equal
*
      LSAME = CA.EQ.CB
      IF( LSAME )
     $   RETURN
*
*     Now test for equivalence if both characters are alphabetic.
*
      ZCODE = ICHAR( 'Z' )
*
*     Use 'Z' rather than 'A' so that ASCII can be detected on Prime
*     machines, on which ICHAR returns a value with bit 8 set.
*     ICHAR('A') on Prime machines returns 193 which is the same as
*     ICHAR('A') on an EBCDIC machine.
*
      INTA = ICHAR( CA )
      INTB = ICHAR( CB )
*
      IF( ZCODE.EQ.90 .OR. ZCODE.EQ.122 ) THEN
*
*        ASCII is assumed - ZCODE is the ASCII code of either lower or
*        upper case 'Z'.
*
         IF( INTA.GE.97 .AND. INTA.LE.122 ) INTA = INTA - 32
         IF( INTB.GE.97 .AND. INTB.LE.122 ) INTB = INTB - 32
*
      ELSE IF( ZCODE.EQ.233 .OR. ZCODE.EQ.169 ) THEN
*
*        EBCDIC is assumed - ZCODE is the EBCDIC code of either lower or
*        upper case 'Z'.
*
         IF( INTA.GE.129 .AND. INTA.LE.137 .OR.
     $       INTA.GE.145 .AND. INTA.LE.153 .OR.
     $       INTA.GE.162 .AND. INTA.LE.169 ) INTA = INTA + 64
         IF( INTB.GE.129 .AND. INTB.LE.137 .OR.
     $       INTB.GE.145 .AND. INTB.LE.153 .OR.
     $       INTB.GE.162 .AND. INTB.LE.169 ) INTB = INTB + 64
*
      ELSE IF( ZCODE.EQ.218 .OR. ZCODE.EQ.250 ) THEN
*
*        ASCII is assumed, on Prime machines - ZCODE is the ASCII code
*        plus 128 of either lower or upper case 'Z'.
*
         IF( INTA.GE.225 .AND. INTA.LE.250 ) INTA = INTA - 32
         IF( INTB.GE.225 .AND. INTB.LE.250 ) INTB = INTB - 32
      END IF
      LSAME = INTA.EQ.INTB
*
*     RETURN
*
*     End of LSAME
*
      END
      subroutine saxpy(n,sa,sx,incx,sy,incy)
c
c     constant times a vector plus a vector.
c     uses unrolled loop for increments equal to one.
c     jack dongarra, linpack, 3/11/78.
c     modified 12/3/93, array(1) declarations changed to array(*)
c
      real sx(*),sy(*),sa
      integer i,incx,incy,ix,iy,m,mp1,n
c
      if(n.le.0)return
      if (sa .eq. 0.0) return
      if(incx.eq.1.and.incy.eq.1)go to 20
c
c        code for unequal increments or equal increments
c          not equal to 1
c
      ix = 1
      iy = 1
      if(incx.lt.0)ix = (-n+1)*incx + 1
      if(incy.lt.0)iy = (-n+1)*incy + 1
      do 10 i = 1,n
        sy(iy) = sy(iy) + sa*sx(ix)
        ix = ix + incx
        iy = iy + incy
   10 continue
      return
c
c        code for both increments equal to 1
c
c
c        clean-up loop
c
   20 m = mod(n,4)
      if( m .eq. 0 ) go to 40
      do 30 i = 1,m
        sy(i) = sy(i) + sa*sx(i)
   30 continue
      if( n .lt. 4 ) return
   40 mp1 = m + 1
      do 50 i = mp1,n,4
        sy(i) = sy(i) + sa*sx(i)
        sy(i + 1) = sy(i + 1) + sa*sx(i + 1)
        sy(i + 2) = sy(i + 2) + sa*sx(i + 2)
        sy(i + 3) = sy(i + 3) + sa*sx(i + 3)
   50 continue
      return
      end
      subroutine scopy(n,sx,incx,sy,incy)
c
c     copies a vector, x, to a vector, y.
c     uses unrolled loops for increments equal to 1.
c     jack dongarra, linpack, 3/11/78.
c     modified 12/3/93, array(1) declarations changed to array(*)
c
      real sx(*),sy(*)
      integer i,incx,incy,ix,iy,m,mp1,n
c
      if(n.le.0)return
      if(incx.eq.1.and.incy.eq.1)go to 20
c
c        code for unequal increments or equal increments
c          not equal to 1
c
      ix = 1
      iy = 1
      if(incx.lt.0)ix = (-n+1)*incx + 1
      if(incy.lt.0)iy = (-n+1)*incy + 1
      do 10 i = 1,n
        sy(iy) = sx(ix)
        ix = ix + incx
        iy = iy + incy
   10 continue
      return
c
c        code for both increments equal to 1
c
c
c        clean-up loop
c
   20 m = mod(n,7)
      if( m .eq. 0 ) go to 40
      do 30 i = 1,m
        sy(i) = sx(i)
   30 continue
      if( n .lt. 7 ) return
   40 mp1 = m + 1
      do 50 i = mp1,n,7
        sy(i) = sx(i)
        sy(i + 1) = sx(i + 1)
        sy(i + 2) = sx(i + 2)
        sy(i + 3) = sx(i + 3)
        sy(i + 4) = sx(i + 4)
        sy(i + 5) = sx(i + 5)
        sy(i + 6) = sx(i + 6)
   50 continue
      return
      end
      real function sdot(n,sx,incx,sy,incy)
c
c     forms the dot product of two vectors.
c     uses unrolled loops for increments equal to one.
c     jack dongarra, linpack, 3/11/78.
c     modified 12/3/93, array(1) declarations changed to array(*)
c
      real sx(*),sy(*),stemp
      integer i,incx,incy,ix,iy,m,mp1,n
c
      stemp = 0.0e0
      sdot = 0.0e0
      if(n.le.0)return
      if(incx.eq.1.and.incy.eq.1)go to 20
c
c        code for unequal increments or equal increments
c          not equal to 1
c
      ix = 1
      iy = 1
      if(incx.lt.0)ix = (-n+1)*incx + 1
      if(incy.lt.0)iy = (-n+1)*incy + 1
      do 10 i = 1,n
        stemp = stemp + sx(ix)*sy(iy)
        ix = ix + incx
        iy = iy + incy
   10 continue
      sdot = stemp
      return
c
c        code for both increments equal to 1
c
c
c        clean-up loop
c
   20 m = mod(n,5)
      if( m .eq. 0 ) go to 40
      do 30 i = 1,m
        stemp = stemp + sx(i)*sy(i)
   30 continue
      if( n .lt. 5 ) go to 60
   40 mp1 = m + 1
      do 50 i = mp1,n,5
        stemp = stemp + sx(i)*sy(i) + sx(i + 1)*sy(i + 1) +
     *   sx(i + 2)*sy(i + 2) + sx(i + 3)*sy(i + 3) + sx(i + 4)*sy(i + 4)
   50 continue
   60 sdot = stemp
      return
      end
      SUBROUTINE SGEMM ( TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB,
     $                   BETA, C, LDC )
*     .. Scalar Arguments ..
      CHARACTER*1        TRANSA, TRANSB
      INTEGER            M, N, K, LDA, LDB, LDC
      REAL               ALPHA, BETA
*     .. Array Arguments ..
      REAL               A( LDA, * ), B( LDB, * ), C( LDC, * )
*     ..
*
*  Purpose
*  =======
*
*  SGEMM  performs one of the matrix-matrix operations
*
*     C := alpha*op( A )*op( B ) + beta*C,
*
*  where  op( X ) is one of
*
*     op( X ) = X   or   op( X ) = X',
*
*  alpha and beta are scalars, and A, B and C are matrices, with op( A )
*  an m by k matrix,  op( B )  a  k by n matrix and  C an m by n matrix.
*
*  Parameters
*  ==========
*
*  TRANSA - CHARACTER*1.
*           On entry, TRANSA specifies the form of op( A ) to be used in
*           the matrix multiplication as follows:
*
*              TRANSA = 'N' or 'n',  op( A ) = A.
*
*              TRANSA = 'T' or 't',  op( A ) = A'.
*
*              TRANSA = 'C' or 'c',  op( A ) = A'.
*
*           Unchanged on exit.
*
*  TRANSB - CHARACTER*1.
*           On entry, TRANSB specifies the form of op( B ) to be used in
*           the matrix multiplication as follows:
*
*              TRANSB = 'N' or 'n',  op( B ) = B.
*
*              TRANSB = 'T' or 't',  op( B ) = B'.
*
*              TRANSB = 'C' or 'c',  op( B ) = B'.
*
*           Unchanged on exit.
*
*  M      - INTEGER.
*           On entry,  M  specifies  the number  of rows  of the  matrix
*           op( A )  and of the  matrix  C.  M  must  be at least  zero.
*           Unchanged on exit.
*
*  N      - INTEGER.
*           On entry,  N  specifies the number  of columns of the matrix
*           op( B ) and the number of columns of the matrix C. N must be
*           at least zero.
*           Unchanged on exit.
*
*  K      - INTEGER.
*           On entry,  K  specifies  the number of columns of the matrix
*           op( A ) and the number of rows of the matrix op( B ). K must
*           be at least  zero.
*           Unchanged on exit.
*
*  ALPHA  - REAL            .
*           On entry, ALPHA specifies the scalar alpha.
*           Unchanged on exit.
*
*  A      - REAL             array of DIMENSION ( LDA, ka ), where ka is
*           k  when  TRANSA = 'N' or 'n',  and is  m  otherwise.
*           Before entry with  TRANSA = 'N' or 'n',  the leading  m by k
*           part of the array  A  must contain the matrix  A,  otherwise
*           the leading  k by m  part of the array  A  must contain  the
*           matrix A.
*           Unchanged on exit.
*
*  LDA    - INTEGER.
*           On entry, LDA specifies the first dimension of A as declared
*           in the calling (sub) program. When  TRANSA = 'N' or 'n' then
*           LDA must be at least  max( 1, m ), otherwise  LDA must be at
*           least  max( 1, k ).
*           Unchanged on exit.
*
*  B      - REAL             array of DIMENSION ( LDB, kb ), where kb is
*           n  when  TRANSB = 'N' or 'n',  and is  k  otherwise.
*           Before entry with  TRANSB = 'N' or 'n',  the leading  k by n
*           part of the array  B  must contain the matrix  B,  otherwise
*           the leading  n by k  part of the array  B  must contain  the
*           matrix B.
*           Unchanged on exit.
*
*  LDB    - INTEGER.
*           On entry, LDB specifies the first dimension of B as declared
*           in the calling (sub) program. When  TRANSB = 'N' or 'n' then
*           LDB must be at least  max( 1, k ), otherwise  LDB must be at
*           least  max( 1, n ).
*           Unchanged on exit.
*
*  BETA   - REAL            .
*           On entry,  BETA  specifies the scalar  beta.  When  BETA  is
*           supplied as zero then C need not be set on input.
*           Unchanged on exit.
*
*  C      - REAL             array of DIMENSION ( LDC, n ).
*           Before entry, the leading  m by n  part of the array  C must
*           contain the matrix  C,  except when  beta  is zero, in which
*           case C need not be set on entry.
*           On exit, the array  C  is overwritten by the  m by n  matrix
*           ( alpha*op( A )*op( B ) + beta*C ).
*
*  LDC    - INTEGER.
*           On entry, LDC specifies the first dimension of C as declared
*           in  the  calling  (sub)  program.   LDC  must  be  at  least
*           max( 1, m ).
*           Unchanged on exit.
*
*
*  Level 3 Blas routine.
*
*  -- Written on 8-February-1989.
*     Jack Dongarra, Argonne National Laboratory.
*     Iain Duff, AERE Harwell.
*     Jeremy Du Croz, Numerical Algorithms Group Ltd.
*     Sven Hammarling, Numerical Algorithms Group Ltd.
*
*
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     .. Local Scalars ..
      LOGICAL            NOTA, NOTB
      INTEGER            I, INFO, J, L, NCOLA, NROWA, NROWB
      REAL               TEMP
*     .. Parameters ..
      REAL               ONE         , ZERO
      PARAMETER        ( ONE = 1.0E+0, ZERO = 0.0E+0 )
*     ..
*     .. Executable Statements ..
*
*     Set  NOTA  and  NOTB  as  true if  A  and  B  respectively are not
*     transposed and set  NROWA, NCOLA and  NROWB  as the number of rows
*     and  columns of  A  and the  number of  rows  of  B  respectively.
*
      NOTA  = LSAME( TRANSA, 'N' )
      NOTB  = LSAME( TRANSB, 'N' )
      IF( NOTA )THEN
         NROWA = M
         NCOLA = K
      ELSE
         NROWA = K
         NCOLA = M
      END IF
      IF( NOTB )THEN
         NROWB = K
      ELSE
         NROWB = N
      END IF
*
*     Test the input parameters.
*
      INFO = 0
      IF(      ( .NOT.NOTA                 ).AND.
     $         ( .NOT.LSAME( TRANSA, 'C' ) ).AND.
     $         ( .NOT.LSAME( TRANSA, 'T' ) )      )THEN
         INFO = 1
      ELSE IF( ( .NOT.NOTB                 ).AND.
     $         ( .NOT.LSAME( TRANSB, 'C' ) ).AND.
     $         ( .NOT.LSAME( TRANSB, 'T' ) )      )THEN
         INFO = 2
      ELSE IF( M  .LT.0               )THEN
         INFO = 3
      ELSE IF( N  .LT.0               )THEN
         INFO = 4
      ELSE IF( K  .LT.0               )THEN
         INFO = 5
      ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN
         INFO = 8
      ELSE IF( LDB.LT.MAX( 1, NROWB ) )THEN
         INFO = 10
      ELSE IF( LDC.LT.MAX( 1, M     ) )THEN
         INFO = 13
      END IF
      IF( INFO.NE.0 )THEN
         CALL XERBLA( 'SGEMM ', INFO )
         RETURN
      END IF
*
*     Quick return if possible.
*
      IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.
     $    ( ( ( ALPHA.EQ.ZERO ).OR.( K.EQ.0 ) ).AND.( BETA.EQ.ONE ) ) )
     $   RETURN
*
*     And if  alpha.eq.zero.
*
      IF( ALPHA.EQ.ZERO )THEN
         IF( BETA.EQ.ZERO )THEN
            DO 20, J = 1, N
               DO 10, I = 1, M
                  C( I, J ) = ZERO
   10          CONTINUE
   20       CONTINUE
         ELSE
            DO 40, J = 1, N
               DO 30, I = 1, M
                  C( I, J ) = BETA*C( I, J )
   30          CONTINUE
   40       CONTINUE
         END IF
         RETURN
      END IF
*
*     Start the operations.
*
      IF( NOTB )THEN
         IF( NOTA )THEN
*
*           Form  C := alpha*A*B + beta*C.
*
            DO 90, J = 1, N
               IF( BETA.EQ.ZERO )THEN
                  DO 50, I = 1, M
                     C( I, J ) = ZERO
   50             CONTINUE
               ELSE IF( BETA.NE.ONE )THEN
                  DO 60, I = 1, M
                     C( I, J ) = BETA*C( I, J )
   60             CONTINUE
               END IF
               DO 80, L = 1, K
                  IF( B( L, J ).NE.ZERO )THEN
                     TEMP = ALPHA*B( L, J )
                     DO 70, I = 1, M
                        C( I, J ) = C( I, J ) + TEMP*A( I, L )
   70                CONTINUE
                  END IF
   80          CONTINUE
   90       CONTINUE
         ELSE
*
*           Form  C := alpha*A'*B + beta*C
*
            DO 120, J = 1, N
               DO 110, I = 1, M
                  TEMP = ZERO
                  DO 100, L = 1, K
                     TEMP = TEMP + A( L, I )*B( L, J )
  100             CONTINUE
                  IF( BETA.EQ.ZERO )THEN
                     C( I, J ) = ALPHA*TEMP
                  ELSE
                     C( I, J ) = ALPHA*TEMP + BETA*C( I, J )
                  END IF
  110          CONTINUE
  120       CONTINUE
         END IF
      ELSE
         IF( NOTA )THEN
*
*           Form  C := alpha*A*B' + beta*C
*
            DO 170, J = 1, N
               IF( BETA.EQ.ZERO )THEN
                  DO 130, I = 1, M
                     C( I, J ) = ZERO
  130             CONTINUE
               ELSE IF( BETA.NE.ONE )THEN
                  DO 140, I = 1, M
                     C( I, J ) = BETA*C( I, J )
  140             CONTINUE
               END IF
               DO 160, L = 1, K
                  IF( B( J, L ).NE.ZERO )THEN
                     TEMP = ALPHA*B( J, L )
                     DO 150, I = 1, M
                        C( I, J ) = C( I, J ) + TEMP*A( I, L )
  150                CONTINUE
                  END IF
  160          CONTINUE
  170       CONTINUE
         ELSE
*
*           Form  C := alpha*A'*B' + beta*C
*
            DO 200, J = 1, N
               DO 190, I = 1, M
                  TEMP = ZERO
                  DO 180, L = 1, K
                     TEMP = TEMP + A( L, I )*B( J, L )
  180             CONTINUE
                  IF( BETA.EQ.ZERO )THEN
                     C( I, J ) = ALPHA*TEMP
                  ELSE
                     C( I, J ) = ALPHA*TEMP + BETA*C( I, J )
                  END IF
  190          CONTINUE
  200       CONTINUE
         END IF
      END IF
*
      RETURN
*
*     End of SGEMM .
*
      END
      SUBROUTINE SGEMV ( TRANS, M, N, ALPHA, A, LDA, X, INCX,
     $                   BETA, Y, INCY )
*     .. Scalar Arguments ..
      REAL               ALPHA, BETA
      INTEGER            INCX, INCY, LDA, M, N
      CHARACTER*1        TRANS
*     .. Array Arguments ..
      REAL               A( LDA, * ), X( * ), Y( * )
*     ..
*
*  Purpose
*  =======
*
*  SGEMV  performs one of the matrix-vector operations
*
*     y := alpha*A*x + beta*y,   or   y := alpha*A'*x + beta*y,
*
*  where alpha and beta are scalars, x and y are vectors and A is an
*  m by n matrix.
*
*  Parameters
*  ==========
*
*  TRANS  - CHARACTER*1.
*           On entry, TRANS specifies the operation to be performed as
*           follows:
*
*              TRANS = 'N' or 'n'   y := alpha*A*x + beta*y.
*
*              TRANS = 'T' or 't'   y := alpha*A'*x + beta*y.
*
*              TRANS = 'C' or 'c'   y := alpha*A'*x + beta*y.
*
*           Unchanged on exit.
*
*  M      - INTEGER.
*           On entry, M specifies the number of rows of the matrix A.
*           M must be at least zero.
*           Unchanged on exit.
*
*  N      - INTEGER.
*           On entry, N specifies the number of columns of the matrix A.
*           N must be at least zero.
*           Unchanged on exit.
*
*  ALPHA  - REAL            .
*           On entry, ALPHA specifies the scalar alpha.
*           Unchanged on exit.
*
*  A      - REAL             array of DIMENSION ( LDA, n ).
*           Before entry, the leading m by n part of the array A must
*           contain the matrix of coefficients.
*           Unchanged on exit.
*
*  LDA    - INTEGER.
*           On entry, LDA specifies the first dimension of A as declared
*           in the calling (sub) program. LDA must be at least
*           max( 1, m ).
*           Unchanged on exit.
*
*  X      - REAL             array of DIMENSION at least
*           ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
*           and at least
*           ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
*           Before entry, the incremented array X must contain the
*           vector x.
*           Unchanged on exit.
*
*  INCX   - INTEGER.
*           On entry, INCX specifies the increment for the elements of
*           X. INCX must not be zero.
*           Unchanged on exit.
*
*  BETA   - REAL            .
*           On entry, BETA specifies the scalar beta. When BETA is
*           supplied as zero then Y need not be set on input.
*           Unchanged on exit.
*
*  Y      - REAL             array of DIMENSION at least
*           ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
*           and at least
*           ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
*           Before entry with BETA non-zero, the incremented array Y
*           must contain the vector y. On exit, Y is overwritten by the
*           updated vector y.
*
*  INCY   - INTEGER.
*           On entry, INCY specifies the increment for the elements of
*           Y. INCY must not be zero.
*           Unchanged on exit.
*
*
*  Level 2 Blas routine.
*
*  -- Written on 22-October-1986.
*     Jack Dongarra, Argonne National Lab.
*     Jeremy Du Croz, Nag Central Office.
*     Sven Hammarling, Nag Central Office.
*     Richard Hanson, Sandia National Labs.
*
*
*     .. Parameters ..
      REAL               ONE         , ZERO
      PARAMETER        ( ONE = 1.0E+0, ZERO = 0.0E+0 )
*     .. Local Scalars ..
      REAL               TEMP
      INTEGER            I, INFO, IX, IY, J, JX, JY, KX, KY, LENX, LENY
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      IF     ( .NOT.LSAME( TRANS, 'N' ).AND.
     $         .NOT.LSAME( TRANS, 'T' ).AND.
     $         .NOT.LSAME( TRANS, 'C' )      )THEN
         INFO = 1
      ELSE IF( M.LT.0 )THEN
         INFO = 2
      ELSE IF( N.LT.0 )THEN
         INFO = 3
      ELSE IF( LDA.LT.MAX( 1, M ) )THEN
         INFO = 6
      ELSE IF( INCX.EQ.0 )THEN
         INFO = 8
      ELSE IF( INCY.EQ.0 )THEN
         INFO = 11
      END IF
      IF( INFO.NE.0 )THEN
         CALL XERBLA( 'SGEMV ', INFO )
         RETURN
      END IF
*
*     Quick return if possible.
*
      IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.
     $    ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
     $   RETURN
*
*     Set  LENX  and  LENY, the lengths of the vectors x and y, and set
*     up the start points in  X  and  Y.
*
      IF( LSAME( TRANS, 'N' ) )THEN
         LENX = N
         LENY = M
      ELSE
         LENX = M
         LENY = N
      END IF
      IF( INCX.GT.0 )THEN
         KX = 1
      ELSE
         KX = 1 - ( LENX - 1 )*INCX
      END IF
      IF( INCY.GT.0 )THEN
         KY = 1
      ELSE
         KY = 1 - ( LENY - 1 )*INCY
      END IF
*
*     Start the operations. In this version the elements of A are
*     accessed sequentially with one pass through A.
*
*     First form  y := beta*y.
*
      IF( BETA.NE.ONE )THEN
         IF( INCY.EQ.1 )THEN
            IF( BETA.EQ.ZERO )THEN
               DO 10, I = 1, LENY
                  Y( I ) = ZERO
   10          CONTINUE
            ELSE
               DO 20, I = 1, LENY
                  Y( I ) = BETA*Y( I )
   20          CONTINUE
            END IF
         ELSE
            IY = KY
            IF( BETA.EQ.ZERO )THEN
               DO 30, I = 1, LENY
                  Y( IY ) = ZERO
                  IY      = IY   + INCY
   30          CONTINUE
            ELSE
               DO 40, I = 1, LENY
                  Y( IY ) = BETA*Y( IY )
                  IY      = IY           + INCY
   40          CONTINUE
            END IF
         END IF
      END IF
      IF( ALPHA.EQ.ZERO )
     $   RETURN
      IF( LSAME( TRANS, 'N' ) )THEN
*
*        Form  y := alpha*A*x + y.
*
         JX = KX
         IF( INCY.EQ.1 )THEN
            DO 60, J = 1, N
               IF( X( JX ).NE.ZERO )THEN
                  TEMP = ALPHA*X( JX )
                  DO 50, I = 1, M
                     Y( I ) = Y( I ) + TEMP*A( I, J )
   50             CONTINUE
               END IF
               JX = JX + INCX
   60       CONTINUE
         ELSE
            DO 80, J = 1, N
               IF( X( JX ).NE.ZERO )THEN
                  TEMP = ALPHA*X( JX )
                  IY   = KY
                  DO 70, I = 1, M
                     Y( IY ) = Y( IY ) + TEMP*A( I, J )
                     IY      = IY      + INCY
   70             CONTINUE
               END IF
               JX = JX + INCX
   80       CONTINUE
         END IF
      ELSE
*
*        Form  y := alpha*A'*x + y.
*
         JY = KY
         IF( INCX.EQ.1 )THEN
            DO 100, J = 1, N
               TEMP = ZERO
               DO 90, I = 1, M
                  TEMP = TEMP + A( I, J )*X( I )
   90          CONTINUE
               Y( JY ) = Y( JY ) + ALPHA*TEMP
               JY      = JY      + INCY
  100       CONTINUE
         ELSE
            DO 120, J = 1, N
               TEMP = ZERO
               IX   = KX
               DO 110, I = 1, M
                  TEMP = TEMP + A( I, J )*X( IX )
                  IX   = IX   + INCX
  110          CONTINUE
               Y( JY ) = Y( JY ) + ALPHA*TEMP
               JY      = JY      + INCY
  120       CONTINUE
         END IF
      END IF
*
      RETURN
*
*     End of SGEMV .
*
      END
      SUBROUTINE SGER  ( M, N, ALPHA, X, INCX, Y, INCY, A, LDA )
*     .. Scalar Arguments ..
      REAL               ALPHA
      INTEGER            INCX, INCY, LDA, M, N
*     .. Array Arguments ..
      REAL               A( LDA, * ), X( * ), Y( * )
*     ..
*
*  Purpose
*  =======
*
*  SGER   performs the rank 1 operation
*
*     A := alpha*x*y' + A,
*
*  where alpha is a scalar, x is an m element vector, y is an n element
*  vector and A is an m by n matrix.
*
*  Parameters
*  ==========
*
*  M      - INTEGER.
*           On entry, M specifies the number of rows of the matrix A.
*           M must be at least zero.
*           Unchanged on exit.
*
*  N      - INTEGER.
*           On entry, N specifies the number of columns of the matrix A.
*           N must be at least zero.
*           Unchanged on exit.
*
*  ALPHA  - REAL            .
*           On entry, ALPHA specifies the scalar alpha.
*           Unchanged on exit.
*
*  X      - REAL             array of dimension at least
*           ( 1 + ( m - 1 )*abs( INCX ) ).
*           Before entry, the incremented array X must contain the m
*           element vector x.
*           Unchanged on exit.
*
*  INCX   - INTEGER.
*           On entry, INCX specifies the increment for the elements of
*           X. INCX must not be zero.
*           Unchanged on exit.
*
*  Y      - REAL             array of dimension at least
*           ( 1 + ( n - 1 )*abs( INCY ) ).
*           Before entry, the incremented array Y must contain the n
*           element vector y.
*           Unchanged on exit.
*
*  INCY   - INTEGER.
*           On entry, INCY specifies the increment for the elements of
*           Y. INCY must not be zero.
*           Unchanged on exit.
*
*  A      - REAL             array of DIMENSION ( LDA, n ).
*           Before entry, the leading m by n part of the array A must
*           contain the matrix of coefficients. On exit, A is
*           overwritten by the updated matrix.
*
*  LDA    - INTEGER.
*           On entry, LDA specifies the first dimension of A as declared
*           in the calling (sub) program. LDA must be at least
*           max( 1, m ).
*           Unchanged on exit.
*
*
*  Level 2 Blas routine.
*
*  -- Written on 22-October-1986.
*     Jack Dongarra, Argonne National Lab.
*     Jeremy Du Croz, Nag Central Office.
*     Sven Hammarling, Nag Central Office.
*     Richard Hanson, Sandia National Labs.
*
*
*     .. Parameters ..
      REAL               ZERO
      PARAMETER        ( ZERO = 0.0E+0 )
*     .. Local Scalars ..
      REAL               TEMP
      INTEGER            I, INFO, IX, J, JY, KX
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      IF     ( M.LT.0 )THEN
         INFO = 1
      ELSE IF( N.LT.0 )THEN
         INFO = 2
      ELSE IF( INCX.EQ.0 )THEN
         INFO = 5
      ELSE IF( INCY.EQ.0 )THEN
         INFO = 7
      ELSE IF( LDA.LT.MAX( 1, M ) )THEN
         INFO = 9
      END IF
      IF( INFO.NE.0 )THEN
         CALL XERBLA( 'SGER  ', INFO )
         RETURN
      END IF
*
*     Quick return if possible.
*
      IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.( ALPHA.EQ.ZERO ) )
     $   RETURN
*
*     Start the operations. In this version the elements of A are
*     accessed sequentially with one pass through A.
*
      IF( INCY.GT.0 )THEN
         JY = 1
      ELSE
         JY = 1 - ( N - 1 )*INCY
      END IF
      IF( INCX.EQ.1 )THEN
         DO 20, J = 1, N
            IF( Y( JY ).NE.ZERO )THEN
               TEMP = ALPHA*Y( JY )
               DO 10, I = 1, M
                  A( I, J ) = A( I, J ) + X( I )*TEMP
   10          CONTINUE
            END IF
            JY = JY + INCY
   20    CONTINUE
      ELSE
         IF( INCX.GT.0 )THEN
            KX = 1
         ELSE
            KX = 1 - ( M - 1 )*INCX
         END IF
         DO 40, J = 1, N
            IF( Y( JY ).NE.ZERO )THEN
               TEMP = ALPHA*Y( JY )
               IX   = KX
               DO 30, I = 1, M
                  A( I, J ) = A( I, J ) + X( IX )*TEMP
                  IX        = IX        + INCX
   30          CONTINUE
            END IF
            JY = JY + INCY
   40    CONTINUE
      END IF
*
      RETURN
*
*     End of SGER  .
*
      END
      SUBROUTINE SLAE2( A, B, C, RT1, RT2 )
*
*  -- LAPACK auxiliary routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     October 31, 1992
*
*     .. Scalar Arguments ..
      REAL               A, B, C, RT1, RT2
*     ..
*
*  Purpose
*  =======
*
*  SLAE2  computes the eigenvalues of a 2-by-2 symmetric matrix
*     [  A   B  ]
*     [  B   C  ].
*  On return, RT1 is the eigenvalue of larger absolute value, and RT2
*  is the eigenvalue of smaller absolute value.
*
*  Arguments
*  =========
*
*  A       (input) REAL
*          The (1,1) element of the 2-by-2 matrix.
*
*  B       (input) REAL
*          The (1,2) and (2,1) elements of the 2-by-2 matrix.
*
*  C       (input) REAL
*          The (2,2) element of the 2-by-2 matrix.
*
*  RT1     (output) REAL
*          The eigenvalue of larger absolute value.
*
*  RT2     (output) REAL
*          The eigenvalue of smaller absolute value.
*
*  Further Details
*  ===============
*
*  RT1 is accurate to a few ulps barring over/underflow.
*
*  RT2 may be inaccurate if there is massive cancellation in the
*  determinant A*C-B*B; higher precision or correctly rounded or
*  correctly truncated arithmetic would be needed to compute RT2
*  accurately in all cases.
*
*  Overflow is possible only if RT1 is within a factor of 5 of overflow.
*  Underflow is harmless if the input data is 0 or exceeds
*     underflow_threshold / macheps.
*
* =====================================================================
*
*     .. Parameters ..
      REAL               ONE
      PARAMETER          ( ONE = 1.0E0 )
      REAL               TWO
      PARAMETER          ( TWO = 2.0E0 )
      REAL               ZERO
      PARAMETER          ( ZERO = 0.0E0 )
      REAL               HALF
      PARAMETER          ( HALF = 0.5E0 )
*     ..
*     .. Local Scalars ..
      REAL               AB, ACMN, ACMX, ADF, DF, RT, SM, TB
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, SQRT
*     ..
*     .. Executable Statements ..
*
*     Compute the eigenvalues
*
      SM = A + C
      DF = A - C
      ADF = ABS( DF )
      TB = B + B
      AB = ABS( TB )
      IF( ABS( A ).GT.ABS( C ) ) THEN
         ACMX = A
         ACMN = C
      ELSE
         ACMX = C
         ACMN = A
      END IF
      IF( ADF.GT.AB ) THEN
         RT = ADF*SQRT( ONE+( AB / ADF )**2 )
      ELSE IF( ADF.LT.AB ) THEN
         RT = AB*SQRT( ONE+( ADF / AB )**2 )
      ELSE
*
*        Includes case AB=ADF=0
*
         RT = AB*SQRT( TWO )
      END IF
      IF( SM.LT.ZERO ) THEN
         RT1 = HALF*( SM-RT )
*
*        Order of execution important.
*        To get fully accurate smaller eigenvalue,
*        next line needs to be executed in higher precision.
*
         RT2 = ( ACMX / RT1 )*ACMN - ( B / RT1 )*B
      ELSE IF( SM.GT.ZERO ) THEN
         RT1 = HALF*( SM+RT )
*
*        Order of execution important.
*        To get fully accurate smaller eigenvalue,
*        next line needs to be executed in higher precision.
*
         RT2 = ( ACMX / RT1 )*ACMN - ( B / RT1 )*B
      ELSE
*
*        Includes case RT1 = RT2 = 0
*
         RT1 = HALF*RT
         RT2 = -HALF*RT
      END IF
      RETURN
*
*     End of SLAE2
*
      END
      SUBROUTINE SLAEV2( A, B, C, RT1, RT2, CS1, SN1 )
*
*  -- LAPACK auxiliary routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     October 31, 1992
*
*     .. Scalar Arguments ..
      REAL               A, B, C, CS1, RT1, RT2, SN1
*     ..
*
*  Purpose
*  =======
*
*  SLAEV2 computes the eigendecomposition of a 2-by-2 symmetric matrix
*     [  A   B  ]
*     [  B   C  ].
*  On return, RT1 is the eigenvalue of larger absolute value, RT2 is the
*  eigenvalue of smaller absolute value, and (CS1,SN1) is the unit right
*  eigenvector for RT1, giving the decomposition
*
*     [ CS1  SN1 ] [  A   B  ] [ CS1 -SN1 ]  =  [ RT1  0  ]
*     [-SN1  CS1 ] [  B   C  ] [ SN1  CS1 ]     [  0  RT2 ].
*
*  Arguments
*  =========
*
*  A       (input) REAL
*          The (1,1) element of the 2-by-2 matrix.
*
*  B       (input) REAL
*          The (1,2) element and the conjugate of the (2,1) element of
*          the 2-by-2 matrix.
*
*  C       (input) REAL
*          The (2,2) element of the 2-by-2 matrix.
*
*  RT1     (output) REAL
*          The eigenvalue of larger absolute value.
*
*  RT2     (output) REAL
*          The eigenvalue of smaller absolute value.
*
*  CS1     (output) REAL
*  SN1     (output) REAL
*          The vector (CS1, SN1) is a unit right eigenvector for RT1.
*
*  Further Details
*  ===============
*
*  RT1 is accurate to a few ulps barring over/underflow.
*
*  RT2 may be inaccurate if there is massive cancellation in the
*  determinant A*C-B*B; higher precision or correctly rounded or
*  correctly truncated arithmetic would be needed to compute RT2
*  accurately in all cases.
*
*  CS1 and SN1 are accurate to a few ulps barring over/underflow.
*
*  Overflow is possible only if RT1 is within a factor of 5 of overflow.
*  Underflow is harmless if the input data is 0 or exceeds
*     underflow_threshold / macheps.
*
* =====================================================================
*
*     .. Parameters ..
      REAL               ONE
      PARAMETER          ( ONE = 1.0E0 )
      REAL               TWO
      PARAMETER          ( TWO = 2.0E0 )
      REAL               ZERO
      PARAMETER          ( ZERO = 0.0E0 )
      REAL               HALF
      PARAMETER          ( HALF = 0.5E0 )
*     ..
*     .. Local Scalars ..
      INTEGER            SGN1, SGN2
      REAL               AB, ACMN, ACMX, ACS, ADF, CS, CT, DF, RT, SM,
     $                   TB, TN
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, SQRT
*     ..
*     .. Executable Statements ..
*
*     Compute the eigenvalues
*
      SM = A + C
      DF = A - C
      ADF = ABS( DF )
      TB = B + B
      AB = ABS( TB )
      IF( ABS( A ).GT.ABS( C ) ) THEN
         ACMX = A
         ACMN = C
      ELSE
         ACMX = C
         ACMN = A
      END IF
      IF( ADF.GT.AB ) THEN
         RT = ADF*SQRT( ONE+( AB / ADF )**2 )
      ELSE IF( ADF.LT.AB ) THEN
         RT = AB*SQRT( ONE+( ADF / AB )**2 )
      ELSE
*
*        Includes case AB=ADF=0
*
         RT = AB*SQRT( TWO )
      END IF
      IF( SM.LT.ZERO ) THEN
         RT1 = HALF*( SM-RT )
         SGN1 = -1
*
*        Order of execution important.
*        To get fully accurate smaller eigenvalue,
*        next line needs to be executed in higher precision.
*
         RT2 = ( ACMX / RT1 )*ACMN - ( B / RT1 )*B
      ELSE IF( SM.GT.ZERO ) THEN
         RT1 = HALF*( SM+RT )
         SGN1 = 1
*
*        Order of execution important.
*        To get fully accurate smaller eigenvalue,
*        next line needs to be executed in higher precision.
*
         RT2 = ( ACMX / RT1 )*ACMN - ( B / RT1 )*B
      ELSE
*
*        Includes case RT1 = RT2 = 0
*
         RT1 = HALF*RT
         RT2 = -HALF*RT
         SGN1 = 1
      END IF
*
*     Compute the eigenvector
*
      IF( DF.GE.ZERO ) THEN
         CS = DF + RT
         SGN2 = 1
      ELSE
         CS = DF - RT
         SGN2 = -1
      END IF
      ACS = ABS( CS )
      IF( ACS.GT.AB ) THEN
         CT = -TB / CS
         SN1 = ONE / SQRT( ONE+CT*CT )
         CS1 = CT*SN1
      ELSE
         IF( AB.EQ.ZERO ) THEN
            CS1 = ONE
            SN1 = ZERO
         ELSE
            TN = -CS / TB
            CS1 = ONE / SQRT( ONE+TN*TN )
            SN1 = TN*CS1
         END IF
      END IF
      IF( SGN1.EQ.SGN2 ) THEN
         TN = CS1
         CS1 = -SN1
         SN1 = TN
      END IF
      RETURN
*
*     End of SLAEV2
*
      END
      REAL             FUNCTION SLAMCH( CMACH )
*
*  -- LAPACK auxiliary routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     October 31, 1992 
*
*     .. Scalar Arguments ..
      CHARACTER          CMACH
*     ..
*
*  Purpose
*  =======
*
*  SLAMCH determines single precision machine parameters.
*
*  Arguments
*  =========
*
*  CMACH   (input) CHARACTER*1
*          Specifies the value to be returned by SLAMCH:
*          = 'E' or 'e',   SLAMCH := eps
*          = 'S' or 's ,   SLAMCH := sfmin
*          = 'B' or 'b',   SLAMCH := base
*          = 'P' or 'p',   SLAMCH := eps*base
*          = 'N' or 'n',   SLAMCH := t
*          = 'R' or 'r',   SLAMCH := rnd
*          = 'M' or 'm',   SLAMCH := emin
*          = 'U' or 'u',   SLAMCH := rmin
*          = 'L' or 'l',   SLAMCH := emax
*          = 'O' or 'o',   SLAMCH := rmax
*
*          where
*
*          eps   = relative machine precision
*          sfmin = safe minimum, such that 1/sfmin does not overflow
*          base  = base of the machine
*          prec  = eps*base
*          t     = number of (base) digits in the mantissa
*          rnd   = 1.0 when rounding occurs in addition, 0.0 otherwise
*          emin  = minimum exponent before (gradual) underflow
*          rmin  = underflow threshold - base**(emin-1)
*          emax  = largest exponent before overflow
*          rmax  = overflow threshold  - (base**emax)*(1-eps)
*
* =====================================================================
*
*     .. Parameters ..
      REAL               ONE, ZERO
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            FIRST, LRND
      INTEGER            BETA, IMAX, IMIN, IT
      REAL               BASE, EMAX, EMIN, EPS, PREC, RMACH, RMAX, RMIN,
     $                   RND, SFMIN, SMALL, T
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           SLAMC2
*     ..
*     .. Save statement ..
      SAVE               FIRST, EPS, SFMIN, BASE, T, RND, EMIN, RMIN,
     $                   EMAX, RMAX, PREC
*     ..
*     .. Data statements ..
      DATA               FIRST / .TRUE. /
*     ..
*     .. Executable Statements ..
*
      IF( FIRST ) THEN
         FIRST = .FALSE.
         CALL SLAMC2( BETA, IT, LRND, EPS, IMIN, RMIN, IMAX, RMAX )
         BASE = BETA
         T = IT
         IF( LRND ) THEN
            RND = ONE
            EPS = ( BASE**( 1-IT ) ) / 2
         ELSE
            RND = ZERO
            EPS = BASE**( 1-IT )
         END IF
         PREC = EPS*BASE
         EMIN = IMIN
         EMAX = IMAX
         SFMIN = RMIN
         SMALL = ONE / RMAX
         IF( SMALL.GE.SFMIN ) THEN
*
*           Use SMALL plus a bit, to avoid the possibility of rounding
*           causing overflow when computing  1/sfmin.
*
            SFMIN = SMALL*( ONE+EPS )
         END IF
      END IF
*
      IF( LSAME( CMACH, 'E' ) ) THEN
         RMACH = EPS
      ELSE IF( LSAME( CMACH, 'S' ) ) THEN
         RMACH = SFMIN
      ELSE IF( LSAME( CMACH, 'B' ) ) THEN
         RMACH = BASE
      ELSE IF( LSAME( CMACH, 'P' ) ) THEN
         RMACH = PREC
      ELSE IF( LSAME( CMACH, 'N' ) ) THEN
         RMACH = T
      ELSE IF( LSAME( CMACH, 'R' ) ) THEN
         RMACH = RND
      ELSE IF( LSAME( CMACH, 'M' ) ) THEN
         RMACH = EMIN
      ELSE IF( LSAME( CMACH, 'U' ) ) THEN
         RMACH = RMIN
      ELSE IF( LSAME( CMACH, 'L' ) ) THEN
         RMACH = EMAX
      ELSE IF( LSAME( CMACH, 'O' ) ) THEN
         RMACH = RMAX
      END IF
*
      SLAMCH = RMACH
      RETURN
*
*     End of SLAMCH
*
      END
*
************************************************************************
*
      SUBROUTINE SLAMC1( BETA, T, RND, IEEE1 )
*
*  -- LAPACK auxiliary routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     October 31, 1992
*
*     .. Scalar Arguments ..
      LOGICAL            IEEE1, RND
      INTEGER            BETA, T
*     ..
*
*  Purpose
*  =======
*
*  SLAMC1 determines the machine parameters given by BETA, T, RND, and
*  IEEE1.
*
*  Arguments
*  =========
*
*  BETA    (output) INTEGER
*          The base of the machine.
*
*  T       (output) INTEGER
*          The number of ( BETA ) digits in the mantissa.
*
*  RND     (output) LOGICAL
*          Specifies whether proper rounding  ( RND = .TRUE. )  or
*          chopping  ( RND = .FALSE. )  occurs in addition. This may not
*          be a reliable guide to the way in which the machine performs
*          its arithmetic.
*
*  IEEE1   (output) LOGICAL
*          Specifies whether rounding appears to be done in the IEEE
*          'round to nearest' style.
*
*  Further Details
*  ===============
*
*  The routine is based on the routine  ENVRON  by Malcolm and
*  incorporates suggestions by Gentleman and Marovich. See
*
*     Malcolm M. A. (1972) Algorithms to reveal properties of
*        floating-point arithmetic. Comms. of the ACM, 15, 949-951.
*
*     Gentleman W. M. and Marovich S. B. (1974) More on algorithms
*        that reveal properties of floating point arithmetic units.
*        Comms. of the ACM, 17, 276-277.
*
* =====================================================================
*
*     .. Local Scalars ..
      LOGICAL            FIRST, LIEEE1, LRND
      INTEGER            LBETA, LT
      REAL               A, B, C, F, ONE, QTR, SAVEC, T1, T2
*     ..
*     .. External Functions ..
      REAL               SLAMC3
      EXTERNAL           SLAMC3
*     ..
*     .. Save statement ..
      SAVE               FIRST, LIEEE1, LBETA, LRND, LT
*     ..
*     .. Data statements ..
      DATA               FIRST / .TRUE. /
*     ..
*     .. Executable Statements ..
*
      IF( FIRST ) THEN
         FIRST = .FALSE.
         ONE = 1
*
*        LBETA,  LIEEE1,  LT and  LRND  are the  local values  of  BETA,
*        IEEE1, T and RND.
*
*        Throughout this routine  we use the function  SLAMC3  to ensure
*        that relevant values are  stored and not held in registers,  or
*        are not affected by optimizers.
*
*        Compute  a = 2.0**m  with the  smallest positive integer m such
*        that
*
*           fl( a + 1.0 ) = a.
*
         A = 1
         C = 1
*
*+       WHILE( C.EQ.ONE )LOOP
   10    CONTINUE
         IF( C.EQ.ONE ) THEN
            A = 2*A
            C = SLAMC3( A, ONE )
            C = SLAMC3( C, -A )
            GO TO 10
         END IF
*+       END WHILE
*
*        Now compute  b = 2.0**m  with the smallest positive integer m
*        such that
*
*           fl( a + b ) .gt. a.
*
         B = 1
         C = SLAMC3( A, B )
*
*+       WHILE( C.EQ.A )LOOP
   20    CONTINUE
         IF( C.EQ.A ) THEN
            B = 2*B
            C = SLAMC3( A, B )
            GO TO 20
         END IF
*+       END WHILE
*
*        Now compute the base.  a and c  are neighbouring floating point
*        numbers  in the  interval  ( beta**t, beta**( t + 1 ) )  and so
*        their difference is beta. Adding 0.25 to c is to ensure that it
*        is truncated to beta and not ( beta - 1 ).
*
         QTR = ONE / 4
         SAVEC = C
         C = SLAMC3( C, -A )
         LBETA = C + QTR
*
*        Now determine whether rounding or chopping occurs,  by adding a
*        bit  less  than  beta/2  and a  bit  more  than  beta/2  to  a.
*
         B = LBETA
         F = SLAMC3( B / 2, -B / 100 )
         C = SLAMC3( F, A )
         IF( C.EQ.A ) THEN
            LRND = .TRUE.
         ELSE
            LRND = .FALSE.
         END IF
         F = SLAMC3( B / 2, B / 100 )
         C = SLAMC3( F, A )
         IF( ( LRND ) .AND. ( C.EQ.A ) )
     $      LRND = .FALSE.
*
*        Try and decide whether rounding is done in the  IEEE  'round to
*        nearest' style. B/2 is half a unit in the last place of the two
*        numbers A and SAVEC. Furthermore, A is even, i.e. has last  bit
*        zero, and SAVEC is odd. Thus adding B/2 to A should not  change
*        A, but adding B/2 to SAVEC should change SAVEC.
*
         T1 = SLAMC3( B / 2, A )
         T2 = SLAMC3( B / 2, SAVEC )
         LIEEE1 = ( T1.EQ.A ) .AND. ( T2.GT.SAVEC ) .AND. LRND
*
*        Now find  the  mantissa, t.  It should  be the  integer part of
*        log to the base beta of a,  however it is safer to determine  t
*        by powering.  So we find t as the smallest positive integer for
*        which
*
*           fl( beta**t + 1.0 ) = 1.0.
*
         LT = 0
         A = 1
         C = 1
*
*+       WHILE( C.EQ.ONE )LOOP
   30    CONTINUE
         IF( C.EQ.ONE ) THEN
            LT = LT + 1
            A = A*LBETA
            C = SLAMC3( A, ONE )
            C = SLAMC3( C, -A )
            GO TO 30
         END IF
*+       END WHILE
*
      END IF
*
      BETA = LBETA
      T = LT
      RND = LRND
      IEEE1 = LIEEE1
      RETURN
*
*     End of SLAMC1
*
      END
*
************************************************************************
*
      SUBROUTINE SLAMC2( BETA, T, RND, EPS, EMIN, RMIN, EMAX, RMAX )
*
*  -- LAPACK auxiliary routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     October 31, 1992
*
*     .. Scalar Arguments ..
      LOGICAL            RND
      INTEGER            BETA, EMAX, EMIN, T
      REAL               EPS, RMAX, RMIN
*     ..
*
*  Purpose
*  =======
*
*  SLAMC2 determines the machine parameters specified in its argument
*  list.
*
*  Arguments
*  =========
*
*  BETA    (output) INTEGER
*          The base of the machine.
*
*  T       (output) INTEGER
*          The number of ( BETA ) digits in the mantissa.
*
*  RND     (output) LOGICAL
*          Specifies whether proper rounding  ( RND = .TRUE. )  or
*          chopping  ( RND = .FALSE. )  occurs in addition. This may not
*          be a reliable guide to the way in which the machine performs
*          its arithmetic.
*
*  EPS     (output) REAL
*          The smallest positive number such that
*
*             fl( 1.0 - EPS ) .LT. 1.0,
*
*          where fl denotes the computed value.
*
*  EMIN    (output) INTEGER
*          The minimum exponent before (gradual) underflow occurs.
*
*  RMIN    (output) REAL
*          The smallest normalized number for the machine, given by
*          BASE**( EMIN - 1 ), where  BASE  is the floating point value
*          of BETA.
*
*  EMAX    (output) INTEGER
*          The maximum exponent before overflow occurs.
*
*  RMAX    (output) REAL
*          The largest positive number for the machine, given by
*          BASE**EMAX * ( 1 - EPS ), where  BASE  is the floating point
*          value of BETA.
*
*  Further Details
*  ===============
*
*  The computation of  EPS  is based on a routine PARANOIA by
*  W. Kahan of the University of California at Berkeley.
*
* =====================================================================
*
*     .. Local Scalars ..
      LOGICAL            FIRST, IEEE, IWARN, LIEEE1, LRND
      INTEGER            GNMIN, GPMIN, I, LBETA, LEMAX, LEMIN, LT,
     $                   NGNMIN, NGPMIN
      REAL               A, B, C, HALF, LEPS, LRMAX, LRMIN, ONE, RBASE,
     $                   SIXTH, SMALL, THIRD, TWO, ZERO
*     ..
*     .. External Functions ..
      REAL               SLAMC3
      EXTERNAL           SLAMC3
*     ..
*     .. External Subroutines ..
      EXTERNAL           SLAMC1, SLAMC4, SLAMC5
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, MIN
*     ..
*     .. Save statement ..
      SAVE               FIRST, IWARN, LBETA, LEMAX, LEMIN, LEPS, LRMAX,
     $                   LRMIN, LT
*     ..
*     .. Data statements ..
      DATA               FIRST / .TRUE. / , IWARN / .FALSE. /
*     ..
*     .. Executable Statements ..
*
      IF( FIRST ) THEN
         FIRST = .FALSE.
         ZERO = 0
         ONE = 1
         TWO = 2
*
*        LBETA, LT, LRND, LEPS, LEMIN and LRMIN  are the local values of
*        BETA, T, RND, EPS, EMIN and RMIN.
*
*        Throughout this routine  we use the function  SLAMC3  to ensure
*        that relevant values are stored  and not held in registers,  or
*        are not affected by optimizers.
*
*        SLAMC1 returns the parameters  LBETA, LT, LRND and LIEEE1.
*
         CALL SLAMC1( LBETA, LT, LRND, LIEEE1 )
*
*        Start to find EPS.
*
         B = LBETA
         A = B**( -LT )
         LEPS = A
*
*        Try some tricks to see whether or not this is the correct  EPS.
*
         B = TWO / 3
         HALF = ONE / 2
         SIXTH = SLAMC3( B, -HALF )
         THIRD = SLAMC3( SIXTH, SIXTH )
         B = SLAMC3( THIRD, -HALF )
         B = SLAMC3( B, SIXTH )
         B = ABS( B )
         IF( B.LT.LEPS )
     $      B = LEPS
*
         LEPS = 1
*
*+       WHILE( ( LEPS.GT.B ).AND.( B.GT.ZERO ) )LOOP
   10    CONTINUE
         IF( ( LEPS.GT.B ) .AND. ( B.GT.ZERO ) ) THEN
            LEPS = B
            C = SLAMC3( HALF*LEPS, ( TWO**5 )*( LEPS**2 ) )
            C = SLAMC3( HALF, -C )
            B = SLAMC3( HALF, C )
            C = SLAMC3( HALF, -B )
            B = SLAMC3( HALF, C )
            GO TO 10
         END IF
*+       END WHILE
*
         IF( A.LT.LEPS )
     $      LEPS = A
*
*        Computation of EPS complete.
*
*        Now find  EMIN.  Let A = + or - 1, and + or - (1 + BASE**(-3)).
*        Keep dividing  A by BETA until (gradual) underflow occurs. This
*        is detected when we cannot recover the previous A.
*
         RBASE = ONE / LBETA
         SMALL = ONE
         DO 20 I = 1, 3
            SMALL = SLAMC3( SMALL*RBASE, ZERO )
   20    CONTINUE
         A = SLAMC3( ONE, SMALL )
         CALL SLAMC4( NGPMIN, ONE, LBETA )
         CALL SLAMC4( NGNMIN, -ONE, LBETA )
         CALL SLAMC4( GPMIN, A, LBETA )
         CALL SLAMC4( GNMIN, -A, LBETA )
         IEEE = .FALSE.
*
         IF( ( NGPMIN.EQ.NGNMIN ) .AND. ( GPMIN.EQ.GNMIN ) ) THEN
            IF( NGPMIN.EQ.GPMIN ) THEN
               LEMIN = NGPMIN
*            ( Non twos-complement machines, no gradual underflow;
*              e.g.,  VAX )
            ELSE IF( ( GPMIN-NGPMIN ).EQ.3 ) THEN
               LEMIN = NGPMIN - 1 + LT
               IEEE = .TRUE.
*            ( Non twos-complement machines, with gradual underflow;
*              e.g., IEEE standard followers )
            ELSE
               LEMIN = MIN( NGPMIN, GPMIN )
*            ( A guess; no known machine )
               IWARN = .TRUE.
            END IF
*
         ELSE IF( ( NGPMIN.EQ.GPMIN ) .AND. ( NGNMIN.EQ.GNMIN ) ) THEN
            IF( ABS( NGPMIN-NGNMIN ).EQ.1 ) THEN
               LEMIN = MAX( NGPMIN, NGNMIN )
*            ( Twos-complement machines, no gradual underflow;
*              e.g., CYBER 205 )
            ELSE
               LEMIN = MIN( NGPMIN, NGNMIN )
*            ( A guess; no known machine )
               IWARN = .TRUE.
            END IF
*
         ELSE IF( ( ABS( NGPMIN-NGNMIN ).EQ.1 ) .AND.
     $            ( GPMIN.EQ.GNMIN ) ) THEN
            IF( ( GPMIN-MIN( NGPMIN, NGNMIN ) ).EQ.3 ) THEN
               LEMIN = MAX( NGPMIN, NGNMIN ) - 1 + LT
*            ( Twos-complement machines with gradual underflow;
*              no known machine )
            ELSE
               LEMIN = MIN( NGPMIN, NGNMIN )
*            ( A guess; no known machine )
               IWARN = .TRUE.
            END IF
*
         ELSE
            LEMIN = MIN( NGPMIN, NGNMIN, GPMIN, GNMIN )
*         ( A guess; no known machine )
            IWARN = .TRUE.
         END IF
***
* Comment out this if block if EMIN is ok
         IF( IWARN ) THEN
            FIRST = .TRUE.
            WRITE( 6, FMT = 9999 )LEMIN
         END IF
***
*
*        Assume IEEE arithmetic if we found denormalised  numbers above,
*        or if arithmetic seems to round in the  IEEE style,  determined
*        in routine SLAMC1. A true IEEE machine should have both  things
*        true; however, faulty machines may have one or the other.
*
         IEEE = IEEE .OR. LIEEE1
*
*        Compute  RMIN by successive division by  BETA. We could compute
*        RMIN as BASE**( EMIN - 1 ),  but some machines underflow during
*        this computation.
*
         LRMIN = 1
         DO 30 I = 1, 1 - LEMIN
            LRMIN = SLAMC3( LRMIN*RBASE, ZERO )
   30    CONTINUE
*
*        Finally, call SLAMC5 to compute EMAX and RMAX.
*
         CALL SLAMC5( LBETA, LT, LEMIN, IEEE, LEMAX, LRMAX )
      END IF
*
      BETA = LBETA
      T = LT
      RND = LRND
      EPS = LEPS
      EMIN = LEMIN
      RMIN = LRMIN
      EMAX = LEMAX
      RMAX = LRMAX
*
      RETURN
*
 9999 FORMAT( / / ' WARNING. The value EMIN may be incorrect:-',
     $      '  EMIN = ', I8, /
     $      ' If, after inspection, the value EMIN looks',
     $      ' acceptable please comment out ',
     $      / ' the IF block as marked within the code of routine',
     $      ' SLAMC2,', / ' otherwise supply EMIN explicitly.', / )
*
*     End of SLAMC2
*
      END
*
************************************************************************
*
      REAL             FUNCTION SLAMC3( A, B )
*
*  -- LAPACK auxiliary routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     October 31, 1992
*
*     .. Scalar Arguments ..
      REAL               A, B
*     ..
*
*  Purpose
*  =======
*
*  SLAMC3  is intended to force  A  and  B  to be stored prior to doing
*  the addition of  A  and  B ,  for use in situations where optimizers
*  might hold one of these in a register.
*
*  Arguments
*  =========
*
*  A, B    (input) REAL
*          The values A and B.
*
* =====================================================================
*
*     .. Executable Statements ..
*
      SLAMC3 = A + B
*
      RETURN
*
*     End of SLAMC3
*
      END
*
************************************************************************
*
      SUBROUTINE SLAMC4( EMIN, START, BASE )
*
*  -- LAPACK auxiliary routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     October 31, 1992
*
*     .. Scalar Arguments ..
      INTEGER            BASE, EMIN
      REAL               START
*     ..
*
*  Purpose
*  =======
*
*  SLAMC4 is a service routine for SLAMC2.
*
*  Arguments
*  =========
*
*  EMIN    (output) EMIN
*          The minimum exponent before (gradual) underflow, computed by
*          setting A = START and dividing by BASE until the previous A
*          can not be recovered.
*
*  START   (input) REAL
*          The starting point for determining EMIN.
*
*  BASE    (input) INTEGER
*          The base of the machine.
*
* =====================================================================
*
*     .. Local Scalars ..
      INTEGER            I
      REAL               A, B1, B2, C1, C2, D1, D2, ONE, RBASE, ZERO
*     ..
*     .. External Functions ..
      REAL               SLAMC3
      EXTERNAL           SLAMC3
*     ..
*     .. Executable Statements ..
*
      A = START
      ONE = 1
      RBASE = ONE / BASE
      ZERO = 0
      EMIN = 1
      B1 = SLAMC3( A*RBASE, ZERO )
      C1 = A
      C2 = A
      D1 = A
      D2 = A
*+    WHILE( ( C1.EQ.A ).AND.( C2.EQ.A ).AND.
*    $       ( D1.EQ.A ).AND.( D2.EQ.A )      )LOOP
   10 CONTINUE
      IF( ( C1.EQ.A ) .AND. ( C2.EQ.A ) .AND. ( D1.EQ.A ) .AND.
     $    ( D2.EQ.A ) ) THEN
         EMIN = EMIN - 1
         A = B1
         B1 = SLAMC3( A / BASE, ZERO )
         C1 = SLAMC3( B1*BASE, ZERO )
         D1 = ZERO
         DO 20 I = 1, BASE
            D1 = D1 + B1
   20    CONTINUE
         B2 = SLAMC3( A*RBASE, ZERO )
         C2 = SLAMC3( B2 / RBASE, ZERO )
         D2 = ZERO
         DO 30 I = 1, BASE
            D2 = D2 + B2
   30    CONTINUE
         GO TO 10
      END IF
*+    END WHILE
*
      RETURN
*
*     End of SLAMC4
*
      END
*
************************************************************************
*
      SUBROUTINE SLAMC5( BETA, P, EMIN, IEEE, EMAX, RMAX )
*
*  -- LAPACK auxiliary routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     October 31, 1992
*
*     .. Scalar Arguments ..
      LOGICAL            IEEE
      INTEGER            BETA, EMAX, EMIN, P
      REAL               RMAX
*     ..
*
*  Purpose
*  =======
*
*  SLAMC5 attempts to compute RMAX, the largest machine floating-point
*  number, without overflow.  It assumes that EMAX + abs(EMIN) sum
*  approximately to a power of 2.  It will fail on machines where this
*  assumption does not hold, for example, the Cyber 205 (EMIN = -28625,
*  EMAX = 28718).  It will also fail if the value supplied for EMIN is
*  too large (i.e. too close to zero), probably with overflow.
*
*  Arguments
*  =========
*
*  BETA    (input) INTEGER
*          The base of floating-point arithmetic.
*
*  P       (input) INTEGER
*          The number of base BETA digits in the mantissa of a
*          floating-point value.
*
*  EMIN    (input) INTEGER
*          The minimum exponent before (gradual) underflow.
*
*  IEEE    (input) LOGICAL
*          A logical flag specifying whether or not the arithmetic
*          system is thought to comply with the IEEE standard.
*
*  EMAX    (output) INTEGER
*          The largest exponent before overflow
*
*  RMAX    (output) REAL
*          The largest machine floating-point number.
*
* =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0 )
*     ..
*     .. Local Scalars ..
      INTEGER            EXBITS, EXPSUM, I, LEXP, NBITS, TRY, UEXP
      REAL               OLDY, RECBAS, Y, Z
*     ..
*     .. External Functions ..
      REAL               SLAMC3
      EXTERNAL           SLAMC3
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MOD
*     ..
*     .. Executable Statements ..
*
*     First compute LEXP and UEXP, two powers of 2 that bound
*     abs(EMIN). We then assume that EMAX + abs(EMIN) will sum
*     approximately to the bound that is closest to abs(EMIN).
*     (EMAX is the exponent of the required number RMAX).
*
      LEXP = 1
      EXBITS = 1
   10 CONTINUE
      TRY = LEXP*2
      IF( TRY.LE.( -EMIN ) ) THEN
         LEXP = TRY
         EXBITS = EXBITS + 1
         GO TO 10
      END IF
      IF( LEXP.EQ.-EMIN ) THEN
         UEXP = LEXP
      ELSE
         UEXP = TRY
         EXBITS = EXBITS + 1
      END IF
*
*     Now -LEXP is less than or equal to EMIN, and -UEXP is greater
*     than or equal to EMIN. EXBITS is the number of bits needed to
*     store the exponent.
*
      IF( ( UEXP+EMIN ).GT.( -LEXP-EMIN ) ) THEN
         EXPSUM = 2*LEXP
      ELSE
         EXPSUM = 2*UEXP
      END IF
*
*     EXPSUM is the exponent range, approximately equal to
*     EMAX - EMIN + 1 .
*
      EMAX = EXPSUM + EMIN - 1
      NBITS = 1 + EXBITS + P
*
*     NBITS is the total number of bits needed to store a
*     floating-point number.
*
      IF( ( MOD( NBITS, 2 ).EQ.1 ) .AND. ( BETA.EQ.2 ) ) THEN
*
*        Either there are an odd number of bits used to store a
*        floating-point number, which is unlikely, or some bits are
*        not used in the representation of numbers, which is possible,
*        (e.g. Cray machines) or the mantissa has an implicit bit,
*        (e.g. IEEE machines, Dec Vax machines), which is perhaps the
*        most likely. We have to assume the last alternative.
*        If this is true, then we need to reduce EMAX by one because
*        there must be some way of representing zero in an implicit-bit
*        system. On machines like Cray, we are reducing EMAX by one
*        unnecessarily.
*
         EMAX = EMAX - 1
      END IF
*
      IF( IEEE ) THEN
*
*        Assume we are on an IEEE machine which reserves one exponent
*        for infinity and NaN.
*
         EMAX = EMAX - 1
      END IF
*
*     Now create RMAX, the largest machine number, which should
*     be equal to (1.0 - BETA**(-P)) * BETA**EMAX .
*
*     First compute 1.0 - BETA**(-P), being careful that the
*     result is less than 1.0 .
*
      RECBAS = ONE / BETA
      Z = BETA - ONE
      Y = ZERO
      DO 20 I = 1, P
         Z = Z*RECBAS
         IF( Y.LT.ONE )
     $      OLDY = Y
         Y = SLAMC3( Y, Z )
   20 CONTINUE
      IF( Y.GE.ONE )
     $   Y = OLDY
*
*     Now multiply by BETA**EMAX to get RMAX.
*
      DO 30 I = 1, EMAX
         Y = SLAMC3( Y*BETA, ZERO )
   30 CONTINUE
*
      RMAX = Y
      RETURN
*
*     End of SLAMC5
*
      END
      REAL             FUNCTION SLANST( NORM, N, D, E )
*
*  -- LAPACK auxiliary routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     February 29, 1992
*
*     .. Scalar Arguments ..
      CHARACTER          NORM
      INTEGER            N
*     ..
*     .. Array Arguments ..
      REAL               D( * ), E( * )
*     ..
*
*  Purpose
*  =======
*
*  SLANST  returns the value of the one norm,  or the Frobenius norm, or
*  the  infinity norm,  or the  element of  largest absolute value  of a
*  real symmetric tridiagonal matrix A.
*
*  Description
*  ===========
*
*  SLANST returns the value
*
*     SLANST = ( max(abs(A(i,j))), NORM = 'M' or 'm'
*              (
*              ( norm1(A),         NORM = '1', 'O' or 'o'
*              (
*              ( normI(A),         NORM = 'I' or 'i'
*              (
*              ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
*
*  where  norm1  denotes the  one norm of a matrix (maximum column sum),
*  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
*  normF  denotes the  Frobenius norm of a matrix (square root of sum of
*  squares).  Note that  max(abs(A(i,j)))  is not a  matrix norm.
*
*  Arguments
*  =========
*
*  NORM    (input) CHARACTER*1
*          Specifies the value to be returned in SLANST as described
*          above.
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.  When N = 0, SLANST is
*          set to zero.
*
*  D       (input) REAL array, dimension (N)
*          The diagonal elements of A.
*
*  E       (input) REAL array, dimension (N-1)
*          The (n-1) sub-diagonal or super-diagonal elements of A.
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE, ZERO
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I
      REAL               ANORM, SCALE, SUM
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           SLASSQ
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, SQRT
*     ..
*     .. Executable Statements ..
*
      IF( N.LE.0 ) THEN
         ANORM = ZERO
      ELSE IF( LSAME( NORM, 'M' ) ) THEN
*
*        Find max(abs(A(i,j))).
*
         ANORM = ABS( D( N ) )
         DO 10 I = 1, N - 1
            ANORM = MAX( ANORM, ABS( D( I ) ) )
            ANORM = MAX( ANORM, ABS( E( I ) ) )
   10    CONTINUE
      ELSE IF( LSAME( NORM, 'O' ) .OR. NORM.EQ.'1' .OR.
     $         LSAME( NORM, 'I' ) ) THEN
*
*        Find norm1(A).
*
         IF( N.EQ.1 ) THEN
            ANORM = ABS( D( 1 ) )
         ELSE
            ANORM = MAX( ABS( D( 1 ) )+ABS( E( 1 ) ),
     $              ABS( E( N-1 ) )+ABS( D( N ) ) )
            DO 20 I = 2, N - 1
               ANORM = MAX( ANORM, ABS( D( I ) )+ABS( E( I ) )+
     $                 ABS( E( I-1 ) ) )
   20       CONTINUE
         END IF
      ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
*
*        Find normF(A).
*
         SCALE = ZERO
         SUM = ONE
         IF( N.GT.1 ) THEN
            CALL SLASSQ( N-1, E, 1, SCALE, SUM )
            SUM = 2*SUM
         END IF
         CALL SLASSQ( N, D, 1, SCALE, SUM )
         ANORM = SCALE*SQRT( SUM )
      END IF
*
      SLANST = ANORM
      RETURN
*
*     End of SLANST
*
      END
      REAL             FUNCTION SLANSY( NORM, UPLO, N, A, LDA, WORK )
*
*  -- LAPACK auxiliary routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     October 31, 1992
*
*     .. Scalar Arguments ..
      CHARACTER          NORM, UPLO
      INTEGER            LDA, N
*     ..
*     .. Array Arguments ..
      REAL               A( LDA, * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  SLANSY  returns the value of the one norm,  or the Frobenius norm, or
*  the  infinity norm,  or the  element of  largest absolute value  of a
*  real symmetric matrix A.
*
*  Description
*  ===========
*
*  SLANSY returns the value
*
*     SLANSY = ( max(abs(A(i,j))), NORM = 'M' or 'm'
*              (
*              ( norm1(A),         NORM = '1', 'O' or 'o'
*              (
*              ( normI(A),         NORM = 'I' or 'i'
*              (
*              ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
*
*  where  norm1  denotes the  one norm of a matrix (maximum column sum),
*  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
*  normF  denotes the  Frobenius norm of a matrix (square root of sum of
*  squares).  Note that  max(abs(A(i,j)))  is not a  matrix norm.
*
*  Arguments
*  =========
*
*  NORM    (input) CHARACTER*1
*          Specifies the value to be returned in SLANSY as described
*          above.
*
*  UPLO    (input) CHARACTER*1
*          Specifies whether the upper or lower triangular part of the
*          symmetric matrix A is to be referenced.
*          = 'U':  Upper triangular part of A is referenced
*          = 'L':  Lower triangular part of A is referenced
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.  When N = 0, SLANSY is
*          set to zero.
*
*  A       (input) REAL array, dimension (LDA,N)
*          The symmetric matrix A.  If UPLO = 'U', the leading n by n
*          upper triangular part of A contains the upper triangular part
*          of the matrix A, and the strictly lower triangular part of A
*          is not referenced.  If UPLO = 'L', the leading n by n lower
*          triangular part of A contains the lower triangular part of
*          the matrix A, and the strictly upper triangular part of A is
*          not referenced.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(N,1).
*
*  WORK    (workspace) REAL array, dimension (LWORK),
*          where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
*          WORK is not referenced.
*
* =====================================================================
*
*     .. Parameters ..
      REAL               ONE, ZERO
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, J
      REAL               ABSA, SCALE, SUM, VALUE
*     ..
*     .. External Subroutines ..
      EXTERNAL           SLASSQ
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, SQRT
*     ..
*     .. Executable Statements ..
*
      IF( N.EQ.0 ) THEN
         VALUE = ZERO
      ELSE IF( LSAME( NORM, 'M' ) ) THEN
*
*        Find max(abs(A(i,j))).
*
         VALUE = ZERO
         IF( LSAME( UPLO, 'U' ) ) THEN
            DO 20 J = 1, N
               DO 10 I = 1, J
                  VALUE = MAX( VALUE, ABS( A( I, J ) ) )
   10          CONTINUE
   20       CONTINUE
         ELSE
            DO 40 J = 1, N
               DO 30 I = J, N
                  VALUE = MAX( VALUE, ABS( A( I, J ) ) )
   30          CONTINUE
   40       CONTINUE
         END IF
      ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. ( LSAME( NORM, 'O' ) ) .OR.
     $         ( NORM.EQ.'1' ) ) THEN
*
*        Find normI(A) ( = norm1(A), since A is symmetric).
*
         VALUE = ZERO
         IF( LSAME( UPLO, 'U' ) ) THEN
            DO 60 J = 1, N
               SUM = ZERO
               DO 50 I = 1, J - 1
                  ABSA = ABS( A( I, J ) )
                  SUM = SUM + ABSA
                  WORK( I ) = WORK( I ) + ABSA
   50          CONTINUE
               WORK( J ) = SUM + ABS( A( J, J ) )
   60       CONTINUE
            DO 70 I = 1, N
               VALUE = MAX( VALUE, WORK( I ) )
   70       CONTINUE
         ELSE
            DO 80 I = 1, N
               WORK( I ) = ZERO
   80       CONTINUE
            DO 100 J = 1, N
               SUM = WORK( J ) + ABS( A( J, J ) )
               DO 90 I = J + 1, N
                  ABSA = ABS( A( I, J ) )
                  SUM = SUM + ABSA
                  WORK( I ) = WORK( I ) + ABSA
   90          CONTINUE
               VALUE = MAX( VALUE, SUM )
  100       CONTINUE
         END IF
      ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
*
*        Find normF(A).
*
         SCALE = ZERO
         SUM = ONE
         IF( LSAME( UPLO, 'U' ) ) THEN
            DO 110 J = 2, N
               CALL SLASSQ( J-1, A( 1, J ), 1, SCALE, SUM )
  110       CONTINUE
         ELSE
            DO 120 J = 1, N - 1
               CALL SLASSQ( N-J, A( J+1, J ), 1, SCALE, SUM )
  120       CONTINUE
         END IF
         SUM = 2*SUM
         CALL SLASSQ( N, A, LDA+1, SCALE, SUM )
         VALUE = SCALE*SQRT( SUM )
      END IF
*
      SLANSY = VALUE
      RETURN
*
*     End of SLANSY
*
      END
      REAL             FUNCTION SLAPY2( X, Y )
*
*  -- LAPACK auxiliary routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     October 31, 1992
*
*     .. Scalar Arguments ..
      REAL               X, Y
*     ..
*
*  Purpose
*  =======
*
*  SLAPY2 returns sqrt(x**2+y**2), taking care not to cause unnecessary
*  overflow.
*
*  Arguments
*  =========
*
*  X       (input) REAL
*  Y       (input) REAL
*          X and Y specify the values x and y.
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO
      PARAMETER          ( ZERO = 0.0E0 )
      REAL               ONE
      PARAMETER          ( ONE = 1.0E0 )
*     ..
*     .. Local Scalars ..
      REAL               W, XABS, YABS, Z
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, MIN, SQRT
*     ..
*     .. Executable Statements ..
*
      XABS = ABS( X )
      YABS = ABS( Y )
      W = MAX( XABS, YABS )
      Z = MIN( XABS, YABS )
      IF( Z.EQ.ZERO ) THEN
         SLAPY2 = W
      ELSE
         SLAPY2 = W*SQRT( ONE+( Z / W )**2 )
      END IF
      RETURN
*
*     End of SLAPY2
*
      END
      SUBROUTINE SLARF( SIDE, M, N, V, INCV, TAU, C, LDC, WORK )
*
*  -- LAPACK auxiliary routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     February 29, 1992
*
*     .. Scalar Arguments ..
      CHARACTER          SIDE
      INTEGER            INCV, LDC, M, N
      REAL               TAU
*     ..
*     .. Array Arguments ..
      REAL               C( LDC, * ), V( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  SLARF applies a real elementary reflector H to a real m by n matrix
*  C, from either the left or the right. H is represented in the form
*
*        H = I - tau * v * v'
*
*  where tau is a real scalar and v is a real vector.
*
*  If tau = 0, then H is taken to be the unit matrix.
*
*  Arguments
*  =========
*
*  SIDE    (input) CHARACTER*1
*          = 'L': form  H * C
*          = 'R': form  C * H
*
*  M       (input) INTEGER
*          The number of rows of the matrix C.
*
*  N       (input) INTEGER
*          The number of columns of the matrix C.
*
*  V       (input) REAL array, dimension
*                     (1 + (M-1)*abs(INCV)) if SIDE = 'L'
*                  or (1 + (N-1)*abs(INCV)) if SIDE = 'R'
*          The vector v in the representation of H. V is not used if
*          TAU = 0.
*
*  INCV    (input) INTEGER
*          The increment between elements of v. INCV <> 0.
*
*  TAU     (input) REAL
*          The value tau in the representation of H.
*
*  C       (input/output) REAL array, dimension (LDC,N)
*          On entry, the m by n matrix C.
*          On exit, C is overwritten by the matrix H * C if SIDE = 'L',
*          or C * H if SIDE = 'R'.
*
*  LDC     (input) INTEGER
*          The leading dimension of the array C. LDC >= max(1,M).
*
*  WORK    (workspace) REAL array, dimension
*                         (N) if SIDE = 'L'
*                      or (M) if SIDE = 'R'
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE, ZERO
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
*     ..
*     .. External Subroutines ..
      EXTERNAL           SGEMV, SGER
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. Executable Statements ..
*
      IF( LSAME( SIDE, 'L' ) ) THEN
*
*        Form  H * C
*
         IF( TAU.NE.ZERO ) THEN
*
*           w := C' * v
*
            CALL SGEMV( 'Transpose', M, N, ONE, C, LDC, V, INCV, ZERO,
     $                  WORK, 1 )
*
*           C := C - v * w'
*
            CALL SGER( M, N, -TAU, V, INCV, WORK, 1, C, LDC )
         END IF
      ELSE
*
*        Form  C * H
*
         IF( TAU.NE.ZERO ) THEN
*
*           w := C * v
*
            CALL SGEMV( 'No transpose', M, N, ONE, C, LDC, V, INCV,
     $                  ZERO, WORK, 1 )
*
*           C := C - w * v'
*
            CALL SGER( M, N, -TAU, WORK, 1, V, INCV, C, LDC )
         END IF
      END IF
      RETURN
*
*     End of SLARF
*
      END
      SUBROUTINE SLARFB( SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV,
     $                   T, LDT, C, LDC, WORK, LDWORK )
*
*  -- LAPACK auxiliary routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     February 29, 1992
*
*     .. Scalar Arguments ..
      CHARACTER          DIRECT, SIDE, STOREV, TRANS
      INTEGER            K, LDC, LDT, LDV, LDWORK, M, N
*     ..
*     .. Array Arguments ..
      REAL               C( LDC, * ), T( LDT, * ), V( LDV, * ),
     $                   WORK( LDWORK, * )
*     ..
*
*  Purpose
*  =======
*
*  SLARFB applies a real block reflector H or its transpose H' to a
*  real m by n matrix C, from either the left or the right.
*
*  Arguments
*  =========
*
*  SIDE    (input) CHARACTER*1
*          = 'L': apply H or H' from the Left
*          = 'R': apply H or H' from the Right
*
*  TRANS   (input) CHARACTER*1
*          = 'N': apply H (No transpose)
*          = 'T': apply H' (Transpose)
*
*  DIRECT  (input) CHARACTER*1
*          Indicates how H is formed from a product of elementary
*          reflectors
*          = 'F': H = H(1) H(2) . . . H(k) (Forward)
*          = 'B': H = H(k) . . . H(2) H(1) (Backward)
*
*  STOREV  (input) CHARACTER*1
*          Indicates how the vectors which define the elementary
*          reflectors are stored:
*          = 'C': Columnwise
*          = 'R': Rowwise
*
*  M       (input) INTEGER
*          The number of rows of the matrix C.
*
*  N       (input) INTEGER
*          The number of columns of the matrix C.
*
*  K       (input) INTEGER
*          The order of the matrix T (= the number of elementary
*          reflectors whose product defines the block reflector).
*
*  V       (input) REAL array, dimension
*                                (LDV,K) if STOREV = 'C'
*                                (LDV,M) if STOREV = 'R' and SIDE = 'L'
*                                (LDV,N) if STOREV = 'R' and SIDE = 'R'
*          The matrix V. See further details.
*
*  LDV     (input) INTEGER
*          The leading dimension of the array V.
*          If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M);
*          if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N);
*          if STOREV = 'R', LDV >= K.
*
*  T       (input) REAL array, dimension (LDT,K)
*          The triangular k by k matrix T in the representation of the
*          block reflector.
*
*  LDT     (input) INTEGER
*          The leading dimension of the array T. LDT >= K.
*
*  C       (input/output) REAL array, dimension (LDC,N)
*          On entry, the m by n matrix C.
*          On exit, C is overwritten by H*C or H'*C or C*H or C*H'.
*
*  LDC     (input) INTEGER
*          The leading dimension of the array C. LDA >= max(1,M).
*
*  WORK    (workspace) REAL array, dimension (LDWORK,K)
*
*  LDWORK  (input) INTEGER
*          The leading dimension of the array WORK.
*          If SIDE = 'L', LDWORK >= max(1,N);
*          if SIDE = 'R', LDWORK >= max(1,M).
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE
      PARAMETER          ( ONE = 1.0E+0 )
*     ..
*     .. Local Scalars ..
      CHARACTER          TRANST
      INTEGER            I, J
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           SCOPY, SGEMM, STRMM
*     ..
*     .. Executable Statements ..
*
*     Quick return if possible
*
      IF( M.LE.0 .OR. N.LE.0 )
     $   RETURN
*
      IF( LSAME( TRANS, 'N' ) ) THEN
         TRANST = 'T'
      ELSE
         TRANST = 'N'
      END IF
*
      IF( LSAME( STOREV, 'C' ) ) THEN
*
         IF( LSAME( DIRECT, 'F' ) ) THEN
*
*           Let  V =  ( V1 )    (first K rows)
*                     ( V2 )
*           where  V1  is unit lower triangular.
*
            IF( LSAME( SIDE, 'L' ) ) THEN
*
*              Form  H * C  or  H' * C  where  C = ( C1 )
*                                                  ( C2 )
*
*              W := C' * V  =  (C1'*V1 + C2'*V2)  (stored in WORK)
*
*              W := C1'
*
               DO 10 J = 1, K
                  CALL SCOPY( N, C( J, 1 ), LDC, WORK( 1, J ), 1 )
   10          CONTINUE
*
*              W := W * V1
*
               CALL STRMM( 'Right', 'Lower', 'No transpose', 'Unit', N,
     $                     K, ONE, V, LDV, WORK, LDWORK )
               IF( M.GT.K ) THEN
*
*                 W := W + C2'*V2
*
                  CALL SGEMM( 'Transpose', 'No transpose', N, K, M-K,
     $                        ONE, C( K+1, 1 ), LDC, V( K+1, 1 ), LDV,
     $                        ONE, WORK, LDWORK )
               END IF
*
*              W := W * T'  or  W * T
*
               CALL STRMM( 'Right', 'Upper', TRANST, 'Non-unit', N, K,
     $                     ONE, T, LDT, WORK, LDWORK )
*
*              C := C - V * W'
*
               IF( M.GT.K ) THEN
*
*                 C2 := C2 - V2 * W'
*
                  CALL SGEMM( 'No transpose', 'Transpose', M-K, N, K,
     $                        -ONE, V( K+1, 1 ), LDV, WORK, LDWORK, ONE,
     $                        C( K+1, 1 ), LDC )
               END IF
*
*              W := W * V1'
*
               CALL STRMM( 'Right', 'Lower', 'Transpose', 'Unit', N, K,
     $                     ONE, V, LDV, WORK, LDWORK )
*
*              C1 := C1 - W'
*
               DO 30 J = 1, K
                  DO 20 I = 1, N
                     C( J, I ) = C( J, I ) - WORK( I, J )
   20             CONTINUE
   30          CONTINUE
*
            ELSE IF( LSAME( SIDE, 'R' ) ) THEN
*
*              Form  C * H  or  C * H'  where  C = ( C1  C2 )
*
*              W := C * V  =  (C1*V1 + C2*V2)  (stored in WORK)
*
*              W := C1
*
               DO 40 J = 1, K
                  CALL SCOPY( M, C( 1, J ), 1, WORK( 1, J ), 1 )
   40          CONTINUE
*
*              W := W * V1
*
               CALL STRMM( 'Right', 'Lower', 'No transpose', 'Unit', M,
     $                     K, ONE, V, LDV, WORK, LDWORK )
               IF( N.GT.K ) THEN
*
*                 W := W + C2 * V2
*
                  CALL SGEMM( 'No transpose', 'No transpose', M, K, N-K,
     $                        ONE, C( 1, K+1 ), LDC, V( K+1, 1 ), LDV,
     $                        ONE, WORK, LDWORK )
               END IF
*
*              W := W * T  or  W * T'
*
               CALL STRMM( 'Right', 'Upper', TRANS, 'Non-unit', M, K,
     $                     ONE, T, LDT, WORK, LDWORK )
*
*              C := C - W * V'
*
               IF( N.GT.K ) THEN
*
*                 C2 := C2 - W * V2'
*
                  CALL SGEMM( 'No transpose', 'Transpose', M, N-K, K,
     $                        -ONE, WORK, LDWORK, V( K+1, 1 ), LDV, ONE,
     $                        C( 1, K+1 ), LDC )
               END IF
*
*              W := W * V1'
*
               CALL STRMM( 'Right', 'Lower', 'Transpose', 'Unit', M, K,
     $                     ONE, V, LDV, WORK, LDWORK )
*
*              C1 := C1 - W
*
               DO 60 J = 1, K
                  DO 50 I = 1, M
                     C( I, J ) = C( I, J ) - WORK( I, J )
   50             CONTINUE
   60          CONTINUE
            END IF
*
         ELSE
*
*           Let  V =  ( V1 )
*                     ( V2 )    (last K rows)
*           where  V2  is unit upper triangular.
*
            IF( LSAME( SIDE, 'L' ) ) THEN
*
*              Form  H * C  or  H' * C  where  C = ( C1 )
*                                                  ( C2 )
*
*              W := C' * V  =  (C1'*V1 + C2'*V2)  (stored in WORK)
*
*              W := C2'
*
               DO 70 J = 1, K
                  CALL SCOPY( N, C( M-K+J, 1 ), LDC, WORK( 1, J ), 1 )
   70          CONTINUE
*
*              W := W * V2
*
               CALL STRMM( 'Right', 'Upper', 'No transpose', 'Unit', N,
     $                     K, ONE, V( M-K+1, 1 ), LDV, WORK, LDWORK )
               IF( M.GT.K ) THEN
*
*                 W := W + C1'*V1
*
                  CALL SGEMM( 'Transpose', 'No transpose', N, K, M-K,
     $                        ONE, C, LDC, V, LDV, ONE, WORK, LDWORK )
               END IF
*
*              W := W * T'  or  W * T
*
               CALL STRMM( 'Right', 'Lower', TRANST, 'Non-unit', N, K,
     $                     ONE, T, LDT, WORK, LDWORK )
*
*              C := C - V * W'
*
               IF( M.GT.K ) THEN
*
*                 C1 := C1 - V1 * W'
*
                  CALL SGEMM( 'No transpose', 'Transpose', M-K, N, K,
     $                        -ONE, V, LDV, WORK, LDWORK, ONE, C, LDC )
               END IF
*
*              W := W * V2'
*
               CALL STRMM( 'Right', 'Upper', 'Transpose', 'Unit', N, K,
     $                     ONE, V( M-K+1, 1 ), LDV, WORK, LDWORK )
*
*              C2 := C2 - W'
*
               DO 90 J = 1, K
                  DO 80 I = 1, N
                     C( M-K+J, I ) = C( M-K+J, I ) - WORK( I, J )
   80             CONTINUE
   90          CONTINUE
*
            ELSE IF( LSAME( SIDE, 'R' ) ) THEN
*
*              Form  C * H  or  C * H'  where  C = ( C1  C2 )
*
*              W := C * V  =  (C1*V1 + C2*V2)  (stored in WORK)
*
*              W := C2
*
               DO 100 J = 1, K
                  CALL SCOPY( M, C( 1, N-K+J ), 1, WORK( 1, J ), 1 )
  100          CONTINUE
*
*              W := W * V2
*
               CALL STRMM( 'Right', 'Upper', 'No transpose', 'Unit', M,
     $                     K, ONE, V( N-K+1, 1 ), LDV, WORK, LDWORK )
               IF( N.GT.K ) THEN
*
*                 W := W + C1 * V1
*
                  CALL SGEMM( 'No transpose', 'No transpose', M, K, N-K,
     $                        ONE, C, LDC, V, LDV, ONE, WORK, LDWORK )
               END IF
*
*              W := W * T  or  W * T'
*
               CALL STRMM( 'Right', 'Lower', TRANS, 'Non-unit', M, K,
     $                     ONE, T, LDT, WORK, LDWORK )
*
*              C := C - W * V'
*
               IF( N.GT.K ) THEN
*
*                 C1 := C1 - W * V1'
*
                  CALL SGEMM( 'No transpose', 'Transpose', M, N-K, K,
     $                        -ONE, WORK, LDWORK, V, LDV, ONE, C, LDC )
               END IF
*
*              W := W * V2'
*
               CALL STRMM( 'Right', 'Upper', 'Transpose', 'Unit', M, K,
     $                     ONE, V( N-K+1, 1 ), LDV, WORK, LDWORK )
*
*              C2 := C2 - W
*
               DO 120 J = 1, K
                  DO 110 I = 1, M
                     C( I, N-K+J ) = C( I, N-K+J ) - WORK( I, J )
  110             CONTINUE
  120          CONTINUE
            END IF
         END IF
*
      ELSE IF( LSAME( STOREV, 'R' ) ) THEN
*
         IF( LSAME( DIRECT, 'F' ) ) THEN
*
*           Let  V =  ( V1  V2 )    (V1: first K columns)
*           where  V1  is unit upper triangular.
*
            IF( LSAME( SIDE, 'L' ) ) THEN
*
*              Form  H * C  or  H' * C  where  C = ( C1 )
*                                                  ( C2 )
*
*              W := C' * V'  =  (C1'*V1' + C2'*V2') (stored in WORK)
*
*              W := C1'
*
               DO 130 J = 1, K
                  CALL SCOPY( N, C( J, 1 ), LDC, WORK( 1, J ), 1 )
  130          CONTINUE
*
*              W := W * V1'
*
               CALL STRMM( 'Right', 'Upper', 'Transpose', 'Unit', N, K,
     $                     ONE, V, LDV, WORK, LDWORK )
               IF( M.GT.K ) THEN
*
*                 W := W + C2'*V2'
*
                  CALL SGEMM( 'Transpose', 'Transpose', N, K, M-K, ONE,
     $                        C( K+1, 1 ), LDC, V( 1, K+1 ), LDV, ONE,
     $                        WORK, LDWORK )
               END IF
*
*              W := W * T'  or  W * T
*
               CALL STRMM( 'Right', 'Upper', TRANST, 'Non-unit', N, K,
     $                     ONE, T, LDT, WORK, LDWORK )
*
*              C := C - V' * W'
*
               IF( M.GT.K ) THEN
*
*                 C2 := C2 - V2' * W'
*
                  CALL SGEMM( 'Transpose', 'Transpose', M-K, N, K, -ONE,
     $                        V( 1, K+1 ), LDV, WORK, LDWORK, ONE,
     $                        C( K+1, 1 ), LDC )
               END IF
*
*              W := W * V1
*
               CALL STRMM( 'Right', 'Upper', 'No transpose', 'Unit', N,
     $                     K, ONE, V, LDV, WORK, LDWORK )
*
*              C1 := C1 - W'
*
               DO 150 J = 1, K
                  DO 140 I = 1, N
                     C( J, I ) = C( J, I ) - WORK( I, J )
  140             CONTINUE
  150          CONTINUE
*
            ELSE IF( LSAME( SIDE, 'R' ) ) THEN
*
*              Form  C * H  or  C * H'  where  C = ( C1  C2 )
*
*              W := C * V'  =  (C1*V1' + C2*V2')  (stored in WORK)
*
*              W := C1
*
               DO 160 J = 1, K
                  CALL SCOPY( M, C( 1, J ), 1, WORK( 1, J ), 1 )
  160          CONTINUE
*
*              W := W * V1'
*
               CALL STRMM( 'Right', 'Upper', 'Transpose', 'Unit', M, K,
     $                     ONE, V, LDV, WORK, LDWORK )
               IF( N.GT.K ) THEN
*
*                 W := W + C2 * V2'
*
                  CALL SGEMM( 'No transpose', 'Transpose', M, K, N-K,
     $                        ONE, C( 1, K+1 ), LDC, V( 1, K+1 ), LDV,
     $                        ONE, WORK, LDWORK )
               END IF
*
*              W := W * T  or  W * T'
*
               CALL STRMM( 'Right', 'Upper', TRANS, 'Non-unit', M, K,
     $                     ONE, T, LDT, WORK, LDWORK )
*
*              C := C - W * V
*
               IF( N.GT.K ) THEN
*
*                 C2 := C2 - W * V2
*
                  CALL SGEMM( 'No transpose', 'No transpose', M, N-K, K,
     $                        -ONE, WORK, LDWORK, V( 1, K+1 ), LDV, ONE,
     $                        C( 1, K+1 ), LDC )
               END IF
*
*              W := W * V1
*
               CALL STRMM( 'Right', 'Upper', 'No transpose', 'Unit', M,
     $                     K, ONE, V, LDV, WORK, LDWORK )
*
*              C1 := C1 - W
*
               DO 180 J = 1, K
                  DO 170 I = 1, M
                     C( I, J ) = C( I, J ) - WORK( I, J )
  170             CONTINUE
  180          CONTINUE
*
            END IF
*
         ELSE
*
*           Let  V =  ( V1  V2 )    (V2: last K columns)
*           where  V2  is unit lower triangular.
*
            IF( LSAME( SIDE, 'L' ) ) THEN
*
*              Form  H * C  or  H' * C  where  C = ( C1 )
*                                                  ( C2 )
*
*              W := C' * V'  =  (C1'*V1' + C2'*V2') (stored in WORK)
*
*              W := C2'
*
               DO 190 J = 1, K
                  CALL SCOPY( N, C( M-K+J, 1 ), LDC, WORK( 1, J ), 1 )
  190          CONTINUE
*
*              W := W * V2'
*
               CALL STRMM( 'Right', 'Lower', 'Transpose', 'Unit', N, K,
     $                     ONE, V( 1, M-K+1 ), LDV, WORK, LDWORK )
               IF( M.GT.K ) THEN
*
*                 W := W + C1'*V1'
*
                  CALL SGEMM( 'Transpose', 'Transpose', N, K, M-K, ONE,
     $                        C, LDC, V, LDV, ONE, WORK, LDWORK )
               END IF
*
*              W := W * T'  or  W * T
*
               CALL STRMM( 'Right', 'Lower', TRANST, 'Non-unit', N, K,
     $                     ONE, T, LDT, WORK, LDWORK )
*
*              C := C - V' * W'
*
               IF( M.GT.K ) THEN
*
*                 C1 := C1 - V1' * W'
*
                  CALL SGEMM( 'Transpose', 'Transpose', M-K, N, K, -ONE,
     $                        V, LDV, WORK, LDWORK, ONE, C, LDC )
               END IF
*
*              W := W * V2
*
               CALL STRMM( 'Right', 'Lower', 'No transpose', 'Unit', N,
     $                     K, ONE, V( 1, M-K+1 ), LDV, WORK, LDWORK )
*
*              C2 := C2 - W'
*
               DO 210 J = 1, K
                  DO 200 I = 1, N
                     C( M-K+J, I ) = C( M-K+J, I ) - WORK( I, J )
  200             CONTINUE
  210          CONTINUE
*
            ELSE IF( LSAME( SIDE, 'R' ) ) THEN
*
*              Form  C * H  or  C * H'  where  C = ( C1  C2 )
*
*              W := C * V'  =  (C1*V1' + C2*V2')  (stored in WORK)
*
*              W := C2
*
               DO 220 J = 1, K
                  CALL SCOPY( M, C( 1, N-K+J ), 1, WORK( 1, J ), 1 )
  220          CONTINUE
*
*              W := W * V2'
*
               CALL STRMM( 'Right', 'Lower', 'Transpose', 'Unit', M, K,
     $                     ONE, V( 1, N-K+1 ), LDV, WORK, LDWORK )
               IF( N.GT.K ) THEN
*
*                 W := W + C1 * V1'
*
                  CALL SGEMM( 'No transpose', 'Transpose', M, K, N-K,
     $                        ONE, C, LDC, V, LDV, ONE, WORK, LDWORK )
               END IF
*
*              W := W * T  or  W * T'
*
               CALL STRMM( 'Right', 'Lower', TRANS, 'Non-unit', M, K,
     $                     ONE, T, LDT, WORK, LDWORK )
*
*              C := C - W * V
*
               IF( N.GT.K ) THEN
*
*                 C1 := C1 - W * V1
*
                  CALL SGEMM( 'No transpose', 'No transpose', M, N-K, K,
     $                        -ONE, WORK, LDWORK, V, LDV, ONE, C, LDC )
               END IF
*
*              W := W * V2
*
               CALL STRMM( 'Right', 'Lower', 'No transpose', 'Unit', M,
     $                     K, ONE, V( 1, N-K+1 ), LDV, WORK, LDWORK )
*
*              C1 := C1 - W
*
               DO 240 J = 1, K
                  DO 230 I = 1, M
                     C( I, N-K+J ) = C( I, N-K+J ) - WORK( I, J )
  230             CONTINUE
  240          CONTINUE
*
            END IF
*
         END IF
      END IF
*
      RETURN
*
*     End of SLARFB
*
      END
      SUBROUTINE SLARFG( N, ALPHA, X, INCX, TAU )
*
*  -- LAPACK auxiliary routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      INTEGER            INCX, N
      REAL               ALPHA, TAU
*     ..
*     .. Array Arguments ..
      REAL               X( * )
*     ..
*
*  Purpose
*  =======
*
*  SLARFG generates a real elementary reflector H of order n, such
*  that
*
*        H * ( alpha ) = ( beta ),   H' * H = I.
*            (   x   )   (   0  )
*
*  where alpha and beta are scalars, and x is an (n-1)-element real
*  vector. H is represented in the form
*
*        H = I - tau * ( 1 ) * ( 1 v' ) ,
*                      ( v )
*
*  where tau is a real scalar and v is a real (n-1)-element
*  vector.
*
*  If the elements of x are all zero, then tau = 0 and H is taken to be
*  the unit matrix.
*
*  Otherwise  1 <= tau <= 2.
*
*  Arguments
*  =========
*
*  N       (input) INTEGER
*          The order of the elementary reflector.
*
*  ALPHA   (input/output) REAL
*          On entry, the value alpha.
*          On exit, it is overwritten with the value beta.
*
*  X       (input/output) REAL array, dimension
*                         (1+(N-2)*abs(INCX))
*          On entry, the vector x.
*          On exit, it is overwritten with the vector v.
*
*  INCX    (input) INTEGER
*          The increment between elements of X. INCX > 0.
*
*  TAU     (output) REAL
*          The value tau.
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE, ZERO
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            J, KNT
      REAL               BETA, RSAFMN, SAFMIN, XNORM
*     ..
*     .. External Functions ..
      REAL               SLAMCH, SLAPY2, SNRM2
      EXTERNAL           SLAMCH, SLAPY2, SNRM2
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, SIGN
*     ..
*     .. External Subroutines ..
      EXTERNAL           SSCAL
*     ..
*     .. Executable Statements ..
*
      IF( N.LE.1 ) THEN
         TAU = ZERO
         RETURN
      END IF
*
      XNORM = SNRM2( N-1, X, INCX )
*
      IF( XNORM.EQ.ZERO ) THEN
*
*        H  =  I
*
         TAU = ZERO
      ELSE
*
*        general case
*
         BETA = -SIGN( SLAPY2( ALPHA, XNORM ), ALPHA )
         SAFMIN = SLAMCH( 'S' ) / SLAMCH( 'E' )
         IF( ABS( BETA ).LT.SAFMIN ) THEN
*
*           XNORM, BETA may be inaccurate; scale X and recompute them
*
            RSAFMN = ONE / SAFMIN
            KNT = 0
   10       CONTINUE
            KNT = KNT + 1
            CALL SSCAL( N-1, RSAFMN, X, INCX )
            BETA = BETA*RSAFMN
            ALPHA = ALPHA*RSAFMN
            IF( ABS( BETA ).LT.SAFMIN )
     $         GO TO 10
*
*           New BETA is at most 1, at least SAFMIN
*
            XNORM = SNRM2( N-1, X, INCX )
            BETA = -SIGN( SLAPY2( ALPHA, XNORM ), ALPHA )
            TAU = ( BETA-ALPHA ) / BETA
            CALL SSCAL( N-1, ONE / ( ALPHA-BETA ), X, INCX )
*
*           If ALPHA is subnormal, it may lose relative accuracy
*
            ALPHA = BETA
            DO 20 J = 1, KNT
               ALPHA = ALPHA*SAFMIN
   20       CONTINUE
         ELSE
            TAU = ( BETA-ALPHA ) / BETA
            CALL SSCAL( N-1, ONE / ( ALPHA-BETA ), X, INCX )
            ALPHA = BETA
         END IF
      END IF
*
      RETURN
*
*     End of SLARFG
*
      END
      SUBROUTINE SLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
*
*  -- LAPACK auxiliary routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     February 29, 1992
*
*     .. Scalar Arguments ..
      CHARACTER          DIRECT, STOREV
      INTEGER            K, LDT, LDV, N
*     ..
*     .. Array Arguments ..
      REAL               T( LDT, * ), TAU( * ), V( LDV, * )
*     ..
*
*  Purpose
*  =======
*
*  SLARFT forms the triangular factor T of a real block reflector H
*  of order n, which is defined as a product of k elementary reflectors.
*
*  If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
*
*  If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
*
*  If STOREV = 'C', the vector which defines the elementary reflector
*  H(i) is stored in the i-th column of the array V, and
*
*     H  =  I - V * T * V'
*
*  If STOREV = 'R', the vector which defines the elementary reflector
*  H(i) is stored in the i-th row of the array V, and
*
*     H  =  I - V' * T * V
*
*  Arguments
*  =========
*
*  DIRECT  (input) CHARACTER*1
*          Specifies the order in which the elementary reflectors are
*          multiplied to form the block reflector:
*          = 'F': H = H(1) H(2) . . . H(k) (Forward)
*          = 'B': H = H(k) . . . H(2) H(1) (Backward)
*
*  STOREV  (input) CHARACTER*1
*          Specifies how the vectors which define the elementary
*          reflectors are stored (see also Further Details):
*          = 'C': columnwise
*          = 'R': rowwise
*
*  N       (input) INTEGER
*          The order of the block reflector H. N >= 0.
*
*  K       (input) INTEGER
*          The order of the triangular factor T (= the number of
*          elementary reflectors). K >= 1.
*
*  V       (input/output) REAL array, dimension
*                               (LDV,K) if STOREV = 'C'
*                               (LDV,N) if STOREV = 'R'
*          The matrix V. See further details.
*
*  LDV     (input) INTEGER
*          The leading dimension of the array V.
*          If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.
*
*  TAU     (input) REAL array, dimension (K)
*          TAU(i) must contain the scalar factor of the elementary
*          reflector H(i).
*
*  T       (output) REAL array, dimension (LDT,K)
*          The k by k triangular factor T of the block reflector.
*          If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is
*          lower triangular. The rest of the array is not used.
*
*  LDT     (input) INTEGER
*          The leading dimension of the array T. LDT >= K.
*
*  Further Details
*  ===============
*
*  The shape of the matrix V and the storage of the vectors which define
*  the H(i) is best illustrated by the following example with n = 5 and
*  k = 3. The elements equal to 1 are not stored; the corresponding
*  array elements are modified but restored on exit. The rest of the
*  array is not used.
*
*  DIRECT = 'F' and STOREV = 'C':         DIRECT = 'F' and STOREV = 'R':
*
*               V = (  1       )                 V = (  1 v1 v1 v1 v1 )
*                   ( v1  1    )                     (     1 v2 v2 v2 )
*                   ( v1 v2  1 )                     (        1 v3 v3 )
*                   ( v1 v2 v3 )
*                   ( v1 v2 v3 )
*
*  DIRECT = 'B' and STOREV = 'C':         DIRECT = 'B' and STOREV = 'R':
*
*               V = ( v1 v2 v3 )                 V = ( v1 v1  1       )
*                   ( v1 v2 v3 )                     ( v2 v2 v2  1    )
*                   (  1 v2 v3 )                     ( v3 v3 v3 v3  1 )
*                   (     1 v3 )
*                   (        1 )
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE, ZERO
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, J
      REAL               VII
*     ..
*     .. External Subroutines ..
      EXTERNAL           SGEMV, STRMV
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. Executable Statements ..
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
      IF( LSAME( DIRECT, 'F' ) ) THEN
         DO 20 I = 1, K
            IF( TAU( I ).EQ.ZERO ) THEN
*
*              H(i)  =  I
*
               DO 10 J = 1, I
                  T( J, I ) = ZERO
   10          CONTINUE
            ELSE
*
*              general case
*
               VII = V( I, I )
               V( I, I ) = ONE
               IF( LSAME( STOREV, 'C' ) ) THEN
*
*                 T(1:i-1,i) := - tau(i) * V(i:n,1:i-1)' * V(i:n,i)
*
                  CALL SGEMV( 'Transpose', N-I+1, I-1, -TAU( I ),
     $                        V( I, 1 ), LDV, V( I, I ), 1, ZERO,
     $                        T( 1, I ), 1 )
               ELSE
*
*                 T(1:i-1,i) := - tau(i) * V(1:i-1,i:n) * V(i,i:n)'
*
                  CALL SGEMV( 'No transpose', I-1, N-I+1, -TAU( I ),
     $                        V( 1, I ), LDV, V( I, I ), LDV, ZERO,
     $                        T( 1, I ), 1 )
               END IF
               V( I, I ) = VII
*
*              T(1:i-1,i) := T(1:i-1,1:i-1) * T(1:i-1,i)
*
               CALL STRMV( 'Upper', 'No transpose', 'Non-unit', I-1, T,
     $                     LDT, T( 1, I ), 1 )
               T( I, I ) = TAU( I )
            END IF
   20    CONTINUE
      ELSE
         DO 40 I = K, 1, -1
            IF( TAU( I ).EQ.ZERO ) THEN
*
*              H(i)  =  I
*
               DO 30 J = I, K
                  T( J, I ) = ZERO
   30          CONTINUE
            ELSE
*
*              general case
*
               IF( I.LT.K ) THEN
                  IF( LSAME( STOREV, 'C' ) ) THEN
                     VII = V( N-K+I, I )
                     V( N-K+I, I ) = ONE
*
*                    T(i+1:k,i) :=
*                            - tau(i) * V(1:n-k+i,i+1:k)' * V(1:n-k+i,i)
*
                     CALL SGEMV( 'Transpose', N-K+I, K-I, -TAU( I ),
     $                           V( 1, I+1 ), LDV, V( 1, I ), 1, ZERO,
     $                           T( I+1, I ), 1 )
                     V( N-K+I, I ) = VII
                  ELSE
                     VII = V( I, N-K+I )
                     V( I, N-K+I ) = ONE
*
*                    T(i+1:k,i) :=
*                            - tau(i) * V(i+1:k,1:n-k+i) * V(i,1:n-k+i)'
*
                     CALL SGEMV( 'No transpose', K-I, N-K+I, -TAU( I ),
     $                           V( I+1, 1 ), LDV, V( I, 1 ), LDV, ZERO,
     $                           T( I+1, I ), 1 )
                     V( I, N-K+I ) = VII
                  END IF
*
*                 T(i+1:k,i) := T(i+1:k,i+1:k) * T(i+1:k,i)
*
                  CALL STRMV( 'Lower', 'No transpose', 'Non-unit', K-I,
     $                        T( I+1, I+1 ), LDT, T( I+1, I ), 1 )
               END IF
               T( I, I ) = TAU( I )
            END IF
   40    CONTINUE
      END IF
      RETURN
*
*     End of SLARFT
*
      END
      SUBROUTINE SLARTG( F, G, CS, SN, R )
*
*  -- LAPACK auxiliary routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      REAL               CS, F, G, R, SN
*     ..
*
*  Purpose
*  =======
*
*  SLARTG generate a plane rotation so that
*
*     [  CS  SN  ]  .  [ F ]  =  [ R ]   where CS**2 + SN**2 = 1.
*     [ -SN  CS  ]     [ G ]     [ 0 ]
*
*  This is a slower, more accurate version of the BLAS1 routine SROTG,
*  with the following other differences:
*     F and G are unchanged on return.
*     If G=0, then CS=1 and SN=0.
*     If F=0 and (G .ne. 0), then CS=0 and SN=1 without doing any
*        floating point operations (saves work in SBDSQR when
*        there are zeros on the diagonal).
*
*  If F exceeds G in magnitude, CS will be positive.
*
*  Arguments
*  =========
*
*  F       (input) REAL
*          The first component of vector to be rotated.
*
*  G       (input) REAL
*          The second component of vector to be rotated.
*
*  CS      (output) REAL
*          The cosine of the rotation.
*
*  SN      (output) REAL
*          The sine of the rotation.
*
*  R       (output) REAL
*          The nonzero component of the rotated vector.
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO
      PARAMETER          ( ZERO = 0.0E0 )
      REAL               ONE
      PARAMETER          ( ONE = 1.0E0 )
      REAL               TWO
      PARAMETER          ( TWO = 2.0E0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            FIRST
      INTEGER            COUNT, I
      REAL               EPS, F1, G1, SAFMIN, SAFMN2, SAFMX2, SCALE
*     ..
*     .. External Functions ..
      REAL               SLAMCH
      EXTERNAL           SLAMCH
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, INT, LOG, MAX, SQRT
*     ..
*     .. Save statement ..
      SAVE               FIRST, SAFMX2, SAFMIN, SAFMN2
*     ..
*     .. Data statements ..
      DATA               FIRST / .TRUE. /
*     ..
*     .. Executable Statements ..
*
      IF( FIRST ) THEN
         FIRST = .FALSE.
         SAFMIN = SLAMCH( 'S' )
         EPS = SLAMCH( 'E' )
         SAFMN2 = SLAMCH( 'B' )**INT( LOG( SAFMIN / EPS ) /
     $            LOG( SLAMCH( 'B' ) ) / TWO )
         SAFMX2 = ONE / SAFMN2
      END IF
      IF( G.EQ.ZERO ) THEN
         CS = ONE
         SN = ZERO
         R = F
      ELSE IF( F.EQ.ZERO ) THEN
         CS = ZERO
         SN = ONE
         R = G
      ELSE
         F1 = F
         G1 = G
         SCALE = MAX( ABS( F1 ), ABS( G1 ) )
         IF( SCALE.GE.SAFMX2 ) THEN
            COUNT = 0
   10       CONTINUE
            COUNT = COUNT + 1
            F1 = F1*SAFMN2
            G1 = G1*SAFMN2
            SCALE = MAX( ABS( F1 ), ABS( G1 ) )
            IF( SCALE.GE.SAFMX2 )
     $         GO TO 10
            R = SQRT( F1**2+G1**2 )
            CS = F1 / R
            SN = G1 / R
            DO 20 I = 1, COUNT
               R = R*SAFMX2
   20       CONTINUE
         ELSE IF( SCALE.LE.SAFMN2 ) THEN
            COUNT = 0
   30       CONTINUE
            COUNT = COUNT + 1
            F1 = F1*SAFMX2
            G1 = G1*SAFMX2
            SCALE = MAX( ABS( F1 ), ABS( G1 ) )
            IF( SCALE.LE.SAFMN2 )
     $         GO TO 30
            R = SQRT( F1**2+G1**2 )
            CS = F1 / R
            SN = G1 / R
            DO 40 I = 1, COUNT
               R = R*SAFMN2
   40       CONTINUE
         ELSE
            R = SQRT( F1**2+G1**2 )
            CS = F1 / R
            SN = G1 / R
         END IF
         IF( ABS( F ).GT.ABS( G ) .AND. CS.LT.ZERO ) THEN
            CS = -CS
            SN = -SN
            R = -R
         END IF
      END IF
      RETURN
*
*     End of SLARTG
*
      END
      SUBROUTINE SLASCL( TYPE, KL, KU, CFROM, CTO, M, N, A, LDA, INFO )
*
*  -- LAPACK auxiliary routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     February 29, 1992
*
*     .. Scalar Arguments ..
      CHARACTER          TYPE
      INTEGER            INFO, KL, KU, LDA, M, N
      REAL               CFROM, CTO
*     ..
*     .. Array Arguments ..
      REAL               A( LDA, * )
*     ..
*
*  Purpose
*  =======
*
*  SLASCL multiplies the M by N real matrix A by the real scalar
*  CTO/CFROM.  This is done without over/underflow as long as the final
*  result CTO*A(I,J)/CFROM does not over/underflow. TYPE specifies that
*  A may be full, upper triangular, lower triangular, upper Hessenberg,
*  or banded.
*
*  Arguments
*  =========
*
*  TYPE    (input) CHARACTER*1
*          TYPE indices the storage type of the input matrix.
*          = 'G':  A is a full matrix.
*          = 'L':  A is a lower triangular matrix.
*          = 'U':  A is an upper triangular matrix.
*          = 'H':  A is an upper Hessenberg matrix.
*          = 'B':  A is a symmetric band matrix with lower bandwidth KL
*                  and upper bandwidth KU and with the only the lower
*                  half stored.
*          = 'Q':  A is a symmetric band matrix with lower bandwidth KL
*                  and upper bandwidth KU and with the only the upper
*                  half stored.
*          = 'Z':  A is a band matrix with lower bandwidth KL and upper
*                  bandwidth KU.
*
*  KL      (input) INTEGER
*          The lower bandwidth of A.  Referenced only if TYPE = 'B',
*          'Q' or 'Z'.
*
*  KU      (input) INTEGER
*          The upper bandwidth of A.  Referenced only if TYPE = 'B',
*          'Q' or 'Z'.
*
*  CFROM   (input) REAL
*  CTO     (input) REAL
*          The matrix A is multiplied by CTO/CFROM. A(I,J) is computed
*          without over/underflow if the final result CTO*A(I,J)/CFROM
*          can be represented without over/underflow.  CFROM must be
*          nonzero.
*
*  M       (input) INTEGER
*          The number of rows of the matrix A.  M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrix A.  N >= 0.
*
*  A       (input/output) REAL array, dimension (LDA,M)
*          The matrix to be multiplied by CTO/CFROM.  See TYPE for the
*          storage type.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,M).
*
*  INFO    (output) INTEGER
*          0  - successful exit
*          <0 - if INFO = -i, the i-th argument had an illegal value.
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            DONE
      INTEGER            I, ITYPE, J, K1, K2, K3, K4
      REAL               BIGNUM, CFROM1, CFROMC, CTO1, CTOC, MUL, SMLNUM
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      REAL               SLAMCH
      EXTERNAL           LSAME, SLAMCH
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, MIN
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments
*
      INFO = 0
*
      IF( LSAME( TYPE, 'G' ) ) THEN
         ITYPE = 0
      ELSE IF( LSAME( TYPE, 'L' ) ) THEN
         ITYPE = 1
      ELSE IF( LSAME( TYPE, 'U' ) ) THEN
         ITYPE = 2
      ELSE IF( LSAME( TYPE, 'H' ) ) THEN
         ITYPE = 3
      ELSE IF( LSAME( TYPE, 'B' ) ) THEN
         ITYPE = 4
      ELSE IF( LSAME( TYPE, 'Q' ) ) THEN
         ITYPE = 5
      ELSE IF( LSAME( TYPE, 'Z' ) ) THEN
         ITYPE = 6
      ELSE
         ITYPE = -1
      END IF
*
      IF( ITYPE.EQ.-1 ) THEN
         INFO = -1
      ELSE IF( CFROM.EQ.ZERO ) THEN
         INFO = -4
      ELSE IF( M.LT.0 ) THEN
         INFO = -6
      ELSE IF( N.LT.0 .OR. ( ITYPE.EQ.4 .AND. N.NE.M ) .OR.
     $         ( ITYPE.EQ.5 .AND. N.NE.M ) ) THEN
         INFO = -7
      ELSE IF( ITYPE.LE.3 .AND. LDA.LT.MAX( 1, M ) ) THEN
         INFO = -9
      ELSE IF( ITYPE.GE.4 ) THEN
         IF( KL.LT.0 .OR. KL.GT.MAX( M-1, 0 ) ) THEN
            INFO = -2
         ELSE IF( KU.LT.0 .OR. KU.GT.MAX( N-1, 0 ) .OR.
     $            ( ( ITYPE.EQ.4 .OR. ITYPE.EQ.5 ) .AND. KL.NE.KU ) )
     $             THEN
            INFO = -3
         ELSE IF( ( ITYPE.EQ.4 .AND. LDA.LT.KL+1 ) .OR.
     $            ( ITYPE.EQ.5 .AND. LDA.LT.KU+1 ) .OR.
     $            ( ITYPE.EQ.6 .AND. LDA.LT.2*KL+KU+1 ) ) THEN
            INFO = -9
         END IF
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SLASCL', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 .OR. M.EQ.0 )
     $   RETURN
*
*     Get machine parameters
*
      SMLNUM = SLAMCH( 'S' )
      BIGNUM = ONE / SMLNUM
*
      CFROMC = CFROM
      CTOC = CTO
*
   10 CONTINUE
      CFROM1 = CFROMC*SMLNUM
      CTO1 = CTOC / BIGNUM
      IF( ABS( CFROM1 ).GT.ABS( CTOC ) .AND. CTOC.NE.ZERO ) THEN
         MUL = SMLNUM
         DONE = .FALSE.
         CFROMC = CFROM1
      ELSE IF( ABS( CTO1 ).GT.ABS( CFROMC ) ) THEN
         MUL = BIGNUM
         DONE = .FALSE.
         CTOC = CTO1
      ELSE
         MUL = CTOC / CFROMC
         DONE = .TRUE.
      END IF
*
      IF( ITYPE.EQ.0 ) THEN
*
*        Full matrix
*
         DO 30 J = 1, N
            DO 20 I = 1, M
               A( I, J ) = A( I, J )*MUL
   20       CONTINUE
   30    CONTINUE
*
      ELSE IF( ITYPE.EQ.1 ) THEN
*
*        Lower triangular matrix
*
         DO 50 J = 1, N
            DO 40 I = J, M
               A( I, J ) = A( I, J )*MUL
   40       CONTINUE
   50    CONTINUE
*
      ELSE IF( ITYPE.EQ.2 ) THEN
*
*        Upper triangular matrix
*
         DO 70 J = 1, N
            DO 60 I = 1, MIN( J, M )
               A( I, J ) = A( I, J )*MUL
   60       CONTINUE
   70    CONTINUE
*
      ELSE IF( ITYPE.EQ.3 ) THEN
*
*        Upper Hessenberg matrix
*
         DO 90 J = 1, N
            DO 80 I = 1, MIN( J+1, M )
               A( I, J ) = A( I, J )*MUL
   80       CONTINUE
   90    CONTINUE
*
      ELSE IF( ITYPE.EQ.4 ) THEN
*
*        Lower half of a symmetric band matrix
*
         K3 = KL + 1
         K4 = N + 1
         DO 110 J = 1, N
            DO 100 I = 1, MIN( K3, K4-J )
               A( I, J ) = A( I, J )*MUL
  100       CONTINUE
  110    CONTINUE
*
      ELSE IF( ITYPE.EQ.5 ) THEN
*
*        Upper half of a symmetric band matrix
*
         K1 = KU + 2
         K3 = KU + 1
         DO 130 J = 1, N
            DO 120 I = MAX( K1-J, 1 ), K3
               A( I, J ) = A( I, J )*MUL
  120       CONTINUE
  130    CONTINUE
*
      ELSE IF( ITYPE.EQ.6 ) THEN
*
*        Band matrix
*
         K1 = KL + KU + 2
         K2 = KL + 1
         K3 = 2*KL + KU + 1
         K4 = KL + KU + 1 + M
         DO 150 J = 1, N
            DO 140 I = MAX( K1-J, K2 ), MIN( K3, K4-J )
               A( I, J ) = A( I, J )*MUL
  140       CONTINUE
  150    CONTINUE
*
      END IF
*
      IF( .NOT.DONE )
     $   GO TO 10
*
      RETURN
*
*     End of SLASCL
*
      END
      SUBROUTINE SLASET( UPLO, M, N, ALPHA, BETA, A, LDA )
*
*  -- LAPACK auxiliary routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     October 31, 1992
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            LDA, M, N
      REAL               ALPHA, BETA
*     ..
*     .. Array Arguments ..
      REAL               A( LDA, * )
*     ..
*
*  Purpose
*  =======
*
*  SLASET initializes an m-by-n matrix A to BETA on the diagonal and
*  ALPHA on the offdiagonals.
*
*  Arguments
*  =========
*
*  UPLO    (input) CHARACTER*1
*          Specifies the part of the matrix A to be set.
*          = 'U':      Upper triangular part is set; the strictly lower
*                      triangular part of A is not changed.
*          = 'L':      Lower triangular part is set; the strictly upper
*                      triangular part of A is not changed.
*          Otherwise:  All of the matrix A is set.
*
*  M       (input) INTEGER
*          The number of rows of the matrix A.  M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrix A.  N >= 0.
*
*  ALPHA   (input) REAL
*          The constant to which the offdiagonal elements are to be set.
*
*  BETA    (input) REAL
*          The constant to which the diagonal elements are to be set.
*
*  A       (input/output) REAL array, dimension (LDA,N)
*          On exit, the leading m-by-n submatrix of A is set as follows:
*
*          if UPLO = 'U', A(i,j) = ALPHA, 1<=i<=j-1, 1<=j<=n,
*          if UPLO = 'L', A(i,j) = ALPHA, j+1<=i<=m, 1<=j<=n,
*          otherwise,     A(i,j) = ALPHA, 1<=i<=m, 1<=j<=n, i.ne.j,
*
*          and, for all UPLO, A(i,i) = BETA, 1<=i<=min(m,n).
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,M).
*
* =====================================================================
*
*     .. Local Scalars ..
      INTEGER            I, J
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MIN
*     ..
*     .. Executable Statements ..
*
      IF( LSAME( UPLO, 'U' ) ) THEN
*
*        Set the strictly upper triangular or trapezoidal part of the
*        array to ALPHA.
*
         DO 20 J = 2, N
            DO 10 I = 1, MIN( J-1, M )
               A( I, J ) = ALPHA
   10       CONTINUE
   20    CONTINUE
*
      ELSE IF( LSAME( UPLO, 'L' ) ) THEN
*
*        Set the strictly lower triangular or trapezoidal part of the
*        array to ALPHA.
*
         DO 40 J = 1, MIN( M, N )
            DO 30 I = J + 1, M
               A( I, J ) = ALPHA
   30       CONTINUE
   40    CONTINUE
*
      ELSE
*
*        Set the leading m-by-n submatrix to ALPHA.
*
         DO 60 J = 1, N
            DO 50 I = 1, M
               A( I, J ) = ALPHA
   50       CONTINUE
   60    CONTINUE
      END IF
*
*     Set the first min(M,N) diagonal elements to BETA.
*
      DO 70 I = 1, MIN( M, N )
         A( I, I ) = BETA
   70 CONTINUE
*
      RETURN
*
*     End of SLASET
*
      END
      SUBROUTINE SLASR( SIDE, PIVOT, DIRECT, M, N, C, S, A, LDA )
*
*  -- LAPACK auxiliary routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     October 31, 1992
*
*     .. Scalar Arguments ..
      CHARACTER          DIRECT, PIVOT, SIDE
      INTEGER            LDA, M, N
*     ..
*     .. Array Arguments ..
      REAL               A( LDA, * ), C( * ), S( * )
*     ..
*
*  Purpose
*  =======
*
*  SLASR   performs the transformation
*
*     A := P*A,   when SIDE = 'L' or 'l'  (  Left-hand side )
*
*     A := A*P',  when SIDE = 'R' or 'r'  ( Right-hand side )
*
*  where A is an m by n real matrix and P is an orthogonal matrix,
*  consisting of a sequence of plane rotations determined by the
*  parameters PIVOT and DIRECT as follows ( z = m when SIDE = 'L' or 'l'
*  and z = n when SIDE = 'R' or 'r' ):
*
*  When  DIRECT = 'F' or 'f'  ( Forward sequence ) then
*
*     P = P( z - 1 )*...*P( 2 )*P( 1 ),
*
*  and when DIRECT = 'B' or 'b'  ( Backward sequence ) then
*
*     P = P( 1 )*P( 2 )*...*P( z - 1 ),
*
*  where  P( k ) is a plane rotation matrix for the following planes:
*
*     when  PIVOT = 'V' or 'v'  ( Variable pivot ),
*        the plane ( k, k + 1 )
*
*     when  PIVOT = 'T' or 't'  ( Top pivot ),
*        the plane ( 1, k + 1 )
*
*     when  PIVOT = 'B' or 'b'  ( Bottom pivot ),
*        the plane ( k, z )
*
*  c( k ) and s( k )  must contain the  cosine and sine that define the
*  matrix  P( k ).  The two by two plane rotation part of the matrix
*  P( k ), R( k ), is assumed to be of the form
*
*     R( k ) = (  c( k )  s( k ) ).
*              ( -s( k )  c( k ) )
*
*  This version vectorises across rows of the array A when SIDE = 'L'.
*
*  Arguments
*  =========
*
*  SIDE    (input) CHARACTER*1
*          Specifies whether the plane rotation matrix P is applied to
*          A on the left or the right.
*          = 'L':  Left, compute A := P*A
*          = 'R':  Right, compute A:= A*P'
*
*  DIRECT  (input) CHARACTER*1
*          Specifies whether P is a forward or backward sequence of
*          plane rotations.
*          = 'F':  Forward, P = P( z - 1 )*...*P( 2 )*P( 1 )
*          = 'B':  Backward, P = P( 1 )*P( 2 )*...*P( z - 1 )
*
*  PIVOT   (input) CHARACTER*1
*          Specifies the plane for which P(k) is a plane rotation
*          matrix.
*          = 'V':  Variable pivot, the plane (k,k+1)
*          = 'T':  Top pivot, the plane (1,k+1)
*          = 'B':  Bottom pivot, the plane (k,z)
*
*  M       (input) INTEGER
*          The number of rows of the matrix A.  If m <= 1, an immediate
*          return is effected.
*
*  N       (input) INTEGER
*          The number of columns of the matrix A.  If n <= 1, an
*          immediate return is effected.
*
*  C, S    (input) REAL arrays, dimension
*                  (M-1) if SIDE = 'L'
*                  (N-1) if SIDE = 'R'
*          c(k) and s(k) contain the cosine and sine that define the
*          matrix P(k).  The two by two plane rotation part of the
*          matrix P(k), R(k), is assumed to be of the form
*          R( k ) = (  c( k )  s( k ) ).
*                   ( -s( k )  c( k ) )
*
*  A       (input/output) REAL array, dimension (LDA,N)
*          The m by n matrix A.  On exit, A is overwritten by P*A if
*          SIDE = 'R' or by A*P' if SIDE = 'L'.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,M).
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE, ZERO
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, INFO, J
      REAL               CTEMP, STEMP, TEMP
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters
*
      INFO = 0
      IF( .NOT.( LSAME( SIDE, 'L' ) .OR. LSAME( SIDE, 'R' ) ) ) THEN
         INFO = 1
      ELSE IF( .NOT.( LSAME( PIVOT, 'V' ) .OR. LSAME( PIVOT,
     $         'T' ) .OR. LSAME( PIVOT, 'B' ) ) ) THEN
         INFO = 2
      ELSE IF( .NOT.( LSAME( DIRECT, 'F' ) .OR. LSAME( DIRECT, 'B' ) ) )
     $          THEN
         INFO = 3
      ELSE IF( M.LT.0 ) THEN
         INFO = 4
      ELSE IF( N.LT.0 ) THEN
         INFO = 5
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
         INFO = 9
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SLASR ', INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( ( M.EQ.0 ) .OR. ( N.EQ.0 ) )
     $   RETURN
      IF( LSAME( SIDE, 'L' ) ) THEN
*
*        Form  P * A
*
         IF( LSAME( PIVOT, 'V' ) ) THEN
            IF( LSAME( DIRECT, 'F' ) ) THEN
               DO 20 J = 1, M - 1
                  CTEMP = C( J )
                  STEMP = S( J )
                  IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
                     DO 10 I = 1, N
                        TEMP = A( J+1, I )
                        A( J+1, I ) = CTEMP*TEMP - STEMP*A( J, I )
                        A( J, I ) = STEMP*TEMP + CTEMP*A( J, I )
   10                CONTINUE
                  END IF
   20          CONTINUE
            ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
               DO 40 J = M - 1, 1, -1
                  CTEMP = C( J )
                  STEMP = S( J )
                  IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
                     DO 30 I = 1, N
                        TEMP = A( J+1, I )
                        A( J+1, I ) = CTEMP*TEMP - STEMP*A( J, I )
                        A( J, I ) = STEMP*TEMP + CTEMP*A( J, I )
   30                CONTINUE
                  END IF
   40          CONTINUE
            END IF
         ELSE IF( LSAME( PIVOT, 'T' ) ) THEN
            IF( LSAME( DIRECT, 'F' ) ) THEN
               DO 60 J = 2, M
                  CTEMP = C( J-1 )
                  STEMP = S( J-1 )
                  IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
                     DO 50 I = 1, N
                        TEMP = A( J, I )
                        A( J, I ) = CTEMP*TEMP - STEMP*A( 1, I )
                        A( 1, I ) = STEMP*TEMP + CTEMP*A( 1, I )
   50                CONTINUE
                  END IF
   60          CONTINUE
            ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
               DO 80 J = M, 2, -1
                  CTEMP = C( J-1 )
                  STEMP = S( J-1 )
                  IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
                     DO 70 I = 1, N
                        TEMP = A( J, I )
                        A( J, I ) = CTEMP*TEMP - STEMP*A( 1, I )
                        A( 1, I ) = STEMP*TEMP + CTEMP*A( 1, I )
   70                CONTINUE
                  END IF
   80          CONTINUE
            END IF
         ELSE IF( LSAME( PIVOT, 'B' ) ) THEN
            IF( LSAME( DIRECT, 'F' ) ) THEN
               DO 100 J = 1, M - 1
                  CTEMP = C( J )
                  STEMP = S( J )
                  IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
                     DO 90 I = 1, N
                        TEMP = A( J, I )
                        A( J, I ) = STEMP*A( M, I ) + CTEMP*TEMP
                        A( M, I ) = CTEMP*A( M, I ) - STEMP*TEMP
   90                CONTINUE
                  END IF
  100          CONTINUE
            ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
               DO 120 J = M - 1, 1, -1
                  CTEMP = C( J )
                  STEMP = S( J )
                  IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
                     DO 110 I = 1, N
                        TEMP = A( J, I )
                        A( J, I ) = STEMP*A( M, I ) + CTEMP*TEMP
                        A( M, I ) = CTEMP*A( M, I ) - STEMP*TEMP
  110                CONTINUE
                  END IF
  120          CONTINUE
            END IF
         END IF
      ELSE IF( LSAME( SIDE, 'R' ) ) THEN
*
*        Form A * P'
*
         IF( LSAME( PIVOT, 'V' ) ) THEN
            IF( LSAME( DIRECT, 'F' ) ) THEN
               DO 140 J = 1, N - 1
                  CTEMP = C( J )
                  STEMP = S( J )
                  IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
                     DO 130 I = 1, M
                        TEMP = A( I, J+1 )
                        A( I, J+1 ) = CTEMP*TEMP - STEMP*A( I, J )
                        A( I, J ) = STEMP*TEMP + CTEMP*A( I, J )
  130                CONTINUE
                  END IF
  140          CONTINUE
            ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
               DO 160 J = N - 1, 1, -1
                  CTEMP = C( J )
                  STEMP = S( J )
                  IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
                     DO 150 I = 1, M
                        TEMP = A( I, J+1 )
                        A( I, J+1 ) = CTEMP*TEMP - STEMP*A( I, J )
                        A( I, J ) = STEMP*TEMP + CTEMP*A( I, J )
  150                CONTINUE
                  END IF
  160          CONTINUE
            END IF
         ELSE IF( LSAME( PIVOT, 'T' ) ) THEN
            IF( LSAME( DIRECT, 'F' ) ) THEN
               DO 180 J = 2, N
                  CTEMP = C( J-1 )
                  STEMP = S( J-1 )
                  IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
                     DO 170 I = 1, M
                        TEMP = A( I, J )
                        A( I, J ) = CTEMP*TEMP - STEMP*A( I, 1 )
                        A( I, 1 ) = STEMP*TEMP + CTEMP*A( I, 1 )
  170                CONTINUE
                  END IF
  180          CONTINUE
            ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
               DO 200 J = N, 2, -1
                  CTEMP = C( J-1 )
                  STEMP = S( J-1 )
                  IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
                     DO 190 I = 1, M
                        TEMP = A( I, J )
                        A( I, J ) = CTEMP*TEMP - STEMP*A( I, 1 )
                        A( I, 1 ) = STEMP*TEMP + CTEMP*A( I, 1 )
  190                CONTINUE
                  END IF
  200          CONTINUE
            END IF
         ELSE IF( LSAME( PIVOT, 'B' ) ) THEN
            IF( LSAME( DIRECT, 'F' ) ) THEN
               DO 220 J = 1, N - 1
                  CTEMP = C( J )
                  STEMP = S( J )
                  IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
                     DO 210 I = 1, M
                        TEMP = A( I, J )
                        A( I, J ) = STEMP*A( I, N ) + CTEMP*TEMP
                        A( I, N ) = CTEMP*A( I, N ) - STEMP*TEMP
  210                CONTINUE
                  END IF
  220          CONTINUE
            ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
               DO 240 J = N - 1, 1, -1
                  CTEMP = C( J )
                  STEMP = S( J )
                  IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
                     DO 230 I = 1, M
                        TEMP = A( I, J )
                        A( I, J ) = STEMP*A( I, N ) + CTEMP*TEMP
                        A( I, N ) = CTEMP*A( I, N ) - STEMP*TEMP
  230                CONTINUE
                  END IF
  240          CONTINUE
            END IF
         END IF
      END IF
*
      RETURN
*
*     End of SLASR
*
      END
      SUBROUTINE SLASRT( ID, N, D, INFO )
*
*  -- LAPACK routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      CHARACTER          ID
      INTEGER            INFO, N
*     ..
*     .. Array Arguments ..
      REAL               D( * )
*     ..
*
*  Purpose
*  =======
*
*  Sort the numbers in D in increasing order (if ID = 'I') or
*  in decreasing order (if ID = 'D' ).
*
*  Use Quick Sort, reverting to Insertion sort on arrays of
*  size <= 20. Dimension of STACK limits N to about 2**32.
*
*  Arguments
*  =========
*
*  ID      (input) CHARACTER*1
*          = 'I': sort D in increasing order;
*          = 'D': sort D in decreasing order.
*
*  N       (input) INTEGER
*          The length of the array D.
*
*  D       (input/output) REAL array, dimension (N)
*          On entry, the array to be sorted.
*          On exit, D has been sorted into increasing order
*          (D(1) <= ... <= D(N) ) or into decreasing order
*          (D(1) >= ... >= D(N) ), depending on ID.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            SELECT
      PARAMETER          ( SELECT = 20 )
*     ..
*     .. Local Scalars ..
      INTEGER            DIR, ENDD, I, J, START, STKPNT
      REAL               D1, D2, D3, DMNMX, TMP
*     ..
*     .. Local Arrays ..
      INTEGER            STACK( 2, 32 )
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     ..
*     .. Executable Statements ..
*
*     Test the input paramters.
*
      INFO = 0
      DIR = -1
      IF( LSAME( ID, 'D' ) ) THEN
         DIR = 0
      ELSE IF( LSAME( ID, 'I' ) ) THEN
         DIR = 1
      END IF
      IF( DIR.EQ.-1 ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SLASRT', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.LE.1 )
     $   RETURN
*
      STKPNT = 1
      STACK( 1, 1 ) = 1
      STACK( 2, 1 ) = N
   10 CONTINUE
      START = STACK( 1, STKPNT )
      ENDD = STACK( 2, STKPNT )
      STKPNT = STKPNT - 1
      IF( ENDD-START.LE.SELECT .AND. ENDD-START.GT.0 ) THEN
*
*        Do Insertion sort on D( START:ENDD )
*
         IF( DIR.EQ.0 ) THEN
*
*           Sort into decreasing order
*
            DO 30 I = START + 1, ENDD
               DO 20 J = I, START + 1, -1
                  IF( D( J ).GT.D( J-1 ) ) THEN
                     DMNMX = D( J )
                     D( J ) = D( J-1 )
                     D( J-1 ) = DMNMX
                  ELSE
                     GO TO 30
                  END IF
   20          CONTINUE
   30       CONTINUE
*
         ELSE
*
*           Sort into increasing order
*
            DO 50 I = START + 1, ENDD
               DO 40 J = I, START + 1, -1
                  IF( D( J ).LT.D( J-1 ) ) THEN
                     DMNMX = D( J )
                     D( J ) = D( J-1 )
                     D( J-1 ) = DMNMX
                  ELSE
                     GO TO 50
                  END IF
   40          CONTINUE
   50       CONTINUE
*
         END IF
*
      ELSE IF( ENDD-START.GT.SELECT ) THEN
*
*        Partition D( START:ENDD ) and stack parts, largest one first
*
*        Choose partition entry as median of 3
*
         D1 = D( START )
         D2 = D( ENDD )
         I = ( START+ENDD ) / 2
         D3 = D( I )
         IF( D1.LT.D2 ) THEN
            IF( D3.LT.D1 ) THEN
               DMNMX = D1
            ELSE IF( D3.LT.D2 ) THEN
               DMNMX = D3
            ELSE
               DMNMX = D2
            END IF
         ELSE
            IF( D3.LT.D2 ) THEN
               DMNMX = D2
            ELSE IF( D3.LT.D1 ) THEN
               DMNMX = D3
            ELSE
               DMNMX = D1
            END IF
         END IF
*
         IF( DIR.EQ.0 ) THEN
*
*           Sort into decreasing order
*
            I = START - 1
            J = ENDD + 1
   60       CONTINUE
   70       CONTINUE
            J = J - 1
            IF( D( J ).LT.DMNMX )
     $         GO TO 70
   80       CONTINUE
            I = I + 1
            IF( D( I ).GT.DMNMX )
     $         GO TO 80
            IF( I.LT.J ) THEN
               TMP = D( I )
               D( I ) = D( J )
               D( J ) = TMP
               GO TO 60
            END IF
            IF( J-START.GT.ENDD-J-1 ) THEN
               STKPNT = STKPNT + 1
               STACK( 1, STKPNT ) = START
               STACK( 2, STKPNT ) = J
               STKPNT = STKPNT + 1
               STACK( 1, STKPNT ) = J + 1
               STACK( 2, STKPNT ) = ENDD
            ELSE
               STKPNT = STKPNT + 1
               STACK( 1, STKPNT ) = J + 1
               STACK( 2, STKPNT ) = ENDD
               STKPNT = STKPNT + 1
               STACK( 1, STKPNT ) = START
               STACK( 2, STKPNT ) = J
            END IF
         ELSE
*
*           Sort into increasing order
*
            I = START - 1
            J = ENDD + 1
   90       CONTINUE
  100       CONTINUE
            J = J - 1
            IF( D( J ).GT.DMNMX )
     $         GO TO 100
  110       CONTINUE
            I = I + 1
            IF( D( I ).LT.DMNMX )
     $         GO TO 110
            IF( I.LT.J ) THEN
               TMP = D( I )
               D( I ) = D( J )
               D( J ) = TMP
               GO TO 90
            END IF
            IF( J-START.GT.ENDD-J-1 ) THEN
               STKPNT = STKPNT + 1
               STACK( 1, STKPNT ) = START
               STACK( 2, STKPNT ) = J
               STKPNT = STKPNT + 1
               STACK( 1, STKPNT ) = J + 1
               STACK( 2, STKPNT ) = ENDD
            ELSE
               STKPNT = STKPNT + 1
               STACK( 1, STKPNT ) = J + 1
               STACK( 2, STKPNT ) = ENDD
               STKPNT = STKPNT + 1
               STACK( 1, STKPNT ) = START
               STACK( 2, STKPNT ) = J
            END IF
         END IF
      END IF
      IF( STKPNT.GT.0 )
     $   GO TO 10
      RETURN
*
*     End of SLASRT
*
      END
      SUBROUTINE SLASSQ( N, X, INCX, SCALE, SUMSQ )
*
*  -- LAPACK auxiliary routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     October 31, 1992
*
*     .. Scalar Arguments ..
      INTEGER            INCX, N
      REAL               SCALE, SUMSQ
*     ..
*     .. Array Arguments ..
      REAL               X( * )
*     ..
*
*  Purpose
*  =======
*
*  SLASSQ  returns the values  scl  and  smsq  such that
*
*     ( scl**2 )*smsq = x( 1 )**2 +...+ x( n )**2 + ( scale**2 )*sumsq,
*
*  where  x( i ) = X( 1 + ( i - 1 )*INCX ). The value of  sumsq  is
*  assumed to be non-negative and  scl  returns the value
*
*     scl = max( scale, abs( x( i ) ) ).
*
*  scale and sumsq must be supplied in SCALE and SUMSQ and
*  scl and smsq are overwritten on SCALE and SUMSQ respectively.
*
*  The routine makes only one pass through the vector x.
*
*  Arguments
*  =========
*
*  N       (input) INTEGER
*          The number of elements to be used from the vector X.
*
*  X       (input) REAL
*          The vector for which a scaled sum of squares is computed.
*             x( i )  = X( 1 + ( i - 1 )*INCX ), 1 <= i <= n.
*
*  INCX    (input) INTEGER
*          The increment between successive values of the vector X.
*          INCX > 0.
*
*  SCALE   (input/output) REAL
*          On entry, the value  scale  in the equation above.
*          On exit, SCALE is overwritten with  scl , the scaling factor
*          for the sum of squares.
*
*  SUMSQ   (input/output) REAL
*          On entry, the value  sumsq  in the equation above.
*          On exit, SUMSQ is overwritten with  smsq , the basic sum of
*          squares from which  scl  has been factored out.
*
* =====================================================================
*
*     .. Parameters ..
      REAL               ZERO
      PARAMETER          ( ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            IX
      REAL               ABSXI
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS
*     ..
*     .. Executable Statements ..
*
      IF( N.GT.0 ) THEN
         DO 10 IX = 1, 1 + ( N-1 )*INCX, INCX
            IF( X( IX ).NE.ZERO ) THEN
               ABSXI = ABS( X( IX ) )
               IF( SCALE.LT.ABSXI ) THEN
                  SUMSQ = 1 + SUMSQ*( SCALE / ABSXI )**2
                  SCALE = ABSXI
               ELSE
                  SUMSQ = SUMSQ + ( ABSXI / SCALE )**2
               END IF
            END IF
   10    CONTINUE
      END IF
      RETURN
*
*     End of SLASSQ
*
      END
      SUBROUTINE SLATRD( UPLO, N, NB, A, LDA, E, TAU, W, LDW )
*
*  -- LAPACK auxiliary routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     October 31, 1992
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            LDA, LDW, N, NB
*     ..
*     .. Array Arguments ..
      REAL               A( LDA, * ), E( * ), TAU( * ), W( LDW, * )
*     ..
*
*  Purpose
*  =======
*
*  SLATRD reduces NB rows and columns of a real symmetric matrix A to
*  symmetric tridiagonal form by an orthogonal similarity
*  transformation Q' * A * Q, and returns the matrices V and W which are
*  needed to apply the transformation to the unreduced part of A.
*
*  If UPLO = 'U', SLATRD reduces the last NB rows and columns of a
*  matrix, of which the upper triangle is supplied;
*  if UPLO = 'L', SLATRD reduces the first NB rows and columns of a
*  matrix, of which the lower triangle is supplied.
*
*  This is an auxiliary routine called by SSYTRD.
*
*  Arguments
*  =========
*
*  UPLO    (input) CHARACTER
*          Specifies whether the upper or lower triangular part of the
*          symmetric matrix A is stored:
*          = 'U': Upper triangular
*          = 'L': Lower triangular
*
*  N       (input) INTEGER
*          The order of the matrix A.
*
*  NB      (input) INTEGER
*          The number of rows and columns to be reduced.
*
*  A       (input/output) REAL array, dimension (LDA,N)
*          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
*          n-by-n upper triangular part of A contains the upper
*          triangular part of the matrix A, and the strictly lower
*          triangular part of A is not referenced.  If UPLO = 'L', the
*          leading n-by-n lower triangular part of A contains the lower
*          triangular part of the matrix A, and the strictly upper
*          triangular part of A is not referenced.
*          On exit:
*          if UPLO = 'U', the last NB columns have been reduced to
*            tridiagonal form, with the diagonal elements overwriting
*            the diagonal elements of A; the elements above the diagonal
*            with the array TAU, represent the orthogonal matrix Q as a
*            product of elementary reflectors;
*          if UPLO = 'L', the first NB columns have been reduced to
*            tridiagonal form, with the diagonal elements overwriting
*            the diagonal elements of A; the elements below the diagonal
*            with the array TAU, represent the  orthogonal matrix Q as a
*            product of elementary reflectors.
*          See Further Details.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= (1,N).
*
*  E       (output) REAL array, dimension (N-1)
*          If UPLO = 'U', E(n-nb:n-1) contains the superdiagonal
*          elements of the last NB columns of the reduced matrix;
*          if UPLO = 'L', E(1:nb) contains the subdiagonal elements of
*          the first NB columns of the reduced matrix.
*
*  TAU     (output) REAL array, dimension (N-1)
*          The scalar factors of the elementary reflectors, stored in
*          TAU(n-nb:n-1) if UPLO = 'U', and in TAU(1:nb) if UPLO = 'L'.
*          See Further Details.
*
*  W       (output) REAL array, dimension (LDW,NB)
*          The n-by-nb matrix W required to update the unreduced part
*          of A.
*
*  LDW     (input) INTEGER
*          The leading dimension of the array W. LDW >= max(1,N).
*
*  Further Details
*  ===============
*
*  If UPLO = 'U', the matrix Q is represented as a product of elementary
*  reflectors
*
*     Q = H(n) H(n-1) . . . H(n-nb+1).
*
*  Each H(i) has the form
*
*     H(i) = I - tau * v * v'
*
*  where tau is a real scalar, and v is a real vector with
*  v(i:n) = 0 and v(i-1) = 1; v(1:i-1) is stored on exit in A(1:i-1,i),
*  and tau in TAU(i-1).
*
*  If UPLO = 'L', the matrix Q is represented as a product of elementary
*  reflectors
*
*     Q = H(1) H(2) . . . H(nb).
*
*  Each H(i) has the form
*
*     H(i) = I - tau * v * v'
*
*  where tau is a real scalar, and v is a real vector with
*  v(1:i) = 0 and v(i+1) = 1; v(i+1:n) is stored on exit in A(i+1:n,i),
*  and tau in TAU(i).
*
*  The elements of the vectors v together form the n-by-nb matrix V
*  which is needed, with W, to apply the transformation to the unreduced
*  part of the matrix, using a symmetric rank-2k update of the form:
*  A := A - V*W' - W*V'.
*
*  The contents of A on exit are illustrated by the following examples
*  with n = 5 and nb = 2:
*
*  if UPLO = 'U':                       if UPLO = 'L':
*
*    (  a   a   a   v4  v5 )              (  d                  )
*    (      a   a   v4  v5 )              (  1   d              )
*    (          a   1   v5 )              (  v1  1   a          )
*    (              d   1  )              (  v1  v2  a   a      )
*    (                  d  )              (  v1  v2  a   a   a  )
*
*  where d denotes a diagonal element of the reduced matrix, a denotes
*  an element of the original matrix that is unchanged, and vi denotes
*  an element of the vector defining H(i).
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE, HALF
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0, HALF = 0.5E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, IW
      REAL               ALPHA
*     ..
*     .. External Subroutines ..
      EXTERNAL           SAXPY, SGEMV, SLARFG, SSCAL, SSYMV
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      REAL               SDOT
      EXTERNAL           LSAME, SDOT
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MIN
*     ..
*     .. Executable Statements ..
*
*     Quick return if possible
*
      IF( N.LE.0 )
     $   RETURN
*
      IF( LSAME( UPLO, 'U' ) ) THEN
*
*        Reduce last NB columns of upper triangle
*
         DO 10 I = N, N - NB + 1, -1
            IW = I - N + NB
            IF( I.LT.N ) THEN
*
*              Update A(1:i,i)
*
               CALL SGEMV( 'No transpose', I, N-I, -ONE, A( 1, I+1 ),
     $                     LDA, W( I, IW+1 ), LDW, ONE, A( 1, I ), 1 )
               CALL SGEMV( 'No transpose', I, N-I, -ONE, W( 1, IW+1 ),
     $                     LDW, A( I, I+1 ), LDA, ONE, A( 1, I ), 1 )
            END IF
            IF( I.GT.1 ) THEN
*
*              Generate elementary reflector H(i) to annihilate
*              A(1:i-2,i)
*
               CALL SLARFG( I-1, A( I-1, I ), A( 1, I ), 1, TAU( I-1 ) )
               E( I-1 ) = A( I-1, I )
               A( I-1, I ) = ONE
*
*              Compute W(1:i-1,i)
*
               CALL SSYMV( 'Upper', I-1, ONE, A, LDA, A( 1, I ), 1,
     $                     ZERO, W( 1, IW ), 1 )
               IF( I.LT.N ) THEN
                  CALL SGEMV( 'Transpose', I-1, N-I, ONE, W( 1, IW+1 ),
     $                        LDW, A( 1, I ), 1, ZERO, W( I+1, IW ), 1 )
                  CALL SGEMV( 'No transpose', I-1, N-I, -ONE,
     $                        A( 1, I+1 ), LDA, W( I+1, IW ), 1, ONE,
     $                        W( 1, IW ), 1 )
                  CALL SGEMV( 'Transpose', I-1, N-I, ONE, A( 1, I+1 ),
     $                        LDA, A( 1, I ), 1, ZERO, W( I+1, IW ), 1 )
                  CALL SGEMV( 'No transpose', I-1, N-I, -ONE,
     $                        W( 1, IW+1 ), LDW, W( I+1, IW ), 1, ONE,
     $                        W( 1, IW ), 1 )
               END IF
               CALL SSCAL( I-1, TAU( I-1 ), W( 1, IW ), 1 )
               ALPHA = -HALF*TAU( I-1 )*SDOT( I-1, W( 1, IW ), 1,
     $                 A( 1, I ), 1 )
               CALL SAXPY( I-1, ALPHA, A( 1, I ), 1, W( 1, IW ), 1 )
            END IF
*
   10    CONTINUE
      ELSE
*
*        Reduce first NB columns of lower triangle
*
         DO 20 I = 1, NB
*
*           Update A(i:n,i)
*
            CALL SGEMV( 'No transpose', N-I+1, I-1, -ONE, A( I, 1 ),
     $                  LDA, W( I, 1 ), LDW, ONE, A( I, I ), 1 )
            CALL SGEMV( 'No transpose', N-I+1, I-1, -ONE, W( I, 1 ),
     $                  LDW, A( I, 1 ), LDA, ONE, A( I, I ), 1 )
            IF( I.LT.N ) THEN
*
*              Generate elementary reflector H(i) to annihilate
*              A(i+2:n,i)
*
               CALL SLARFG( N-I, A( I+1, I ), A( MIN( I+2, N ), I ), 1,
     $                      TAU( I ) )
               E( I ) = A( I+1, I )
               A( I+1, I ) = ONE
*
*              Compute W(i+1:n,i)
*
               CALL SSYMV( 'Lower', N-I, ONE, A( I+1, I+1 ), LDA,
     $                     A( I+1, I ), 1, ZERO, W( I+1, I ), 1 )
               CALL SGEMV( 'Transpose', N-I, I-1, ONE, W( I+1, 1 ), LDW,
     $                     A( I+1, I ), 1, ZERO, W( 1, I ), 1 )
               CALL SGEMV( 'No transpose', N-I, I-1, -ONE, A( I+1, 1 ),
     $                     LDA, W( 1, I ), 1, ONE, W( I+1, I ), 1 )
               CALL SGEMV( 'Transpose', N-I, I-1, ONE, A( I+1, 1 ), LDA,
     $                     A( I+1, I ), 1, ZERO, W( 1, I ), 1 )
               CALL SGEMV( 'No transpose', N-I, I-1, -ONE, W( I+1, 1 ),
     $                     LDW, W( 1, I ), 1, ONE, W( I+1, I ), 1 )
               CALL SSCAL( N-I, TAU( I ), W( I+1, I ), 1 )
               ALPHA = -HALF*TAU( I )*SDOT( N-I, W( I+1, I ), 1,
     $                 A( I+1, I ), 1 )
               CALL SAXPY( N-I, ALPHA, A( I+1, I ), 1, W( I+1, I ), 1 )
            END IF
*
   20    CONTINUE
      END IF
*
      RETURN
*
*     End of SLATRD
*
      END
      REAL             FUNCTION SNRM2 ( N, X, INCX )
*     .. Scalar Arguments ..
      INTEGER                           INCX, N
*     .. Array Arguments ..
      REAL                              X( * )
*     ..
*
*  SNRM2 returns the euclidean norm of a vector via the function
*  name, so that
*
*     SNRM2 := sqrt( x'*x )
*
*
*
*  -- This version written on 25-October-1982.
*     Modified on 14-October-1993 to inline the call to SLASSQ.
*     Sven Hammarling, Nag Ltd.
*
*
*     .. Parameters ..
      REAL                  ONE         , ZERO
      PARAMETER           ( ONE = 1.0E+0, ZERO = 0.0E+0 )
*     .. Local Scalars ..
      INTEGER               IX
      REAL                  ABSXI, NORM, SCALE, SSQ
*     .. Intrinsic Functions ..
      INTRINSIC             ABS, SQRT
*     ..
*     .. Executable Statements ..
      IF( N.LT.1 .OR. INCX.LT.1 )THEN
         NORM  = ZERO
      ELSE IF( N.EQ.1 )THEN
         NORM  = ABS( X( 1 ) )
      ELSE
         SCALE = ZERO
         SSQ   = ONE
*        The following loop is equivalent to this call to the LAPACK
*        auxiliary routine:
*        CALL SLASSQ( N, X, INCX, SCALE, SSQ )
*
         DO 10, IX = 1, 1 + ( N - 1 )*INCX, INCX
            IF( X( IX ).NE.ZERO )THEN
               ABSXI = ABS( X( IX ) )
               IF( SCALE.LT.ABSXI )THEN
                  SSQ   = ONE   + SSQ*( SCALE/ABSXI )**2
                  SCALE = ABSXI
               ELSE
                  SSQ   = SSQ   +     ( ABSXI/SCALE )**2
               END IF
            END IF
   10    CONTINUE
         NORM  = SCALE * SQRT( SSQ )
      END IF
*
      SNRM2 = NORM
      RETURN
*
*     End of SNRM2.
*
      END
      SUBROUTINE SORG2L( M, N, K, A, LDA, TAU, WORK, INFO )
*
*  -- LAPACK routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     February 29, 1992
*
*     .. Scalar Arguments ..
      INTEGER            INFO, K, LDA, M, N
*     ..
*     .. Array Arguments ..
      REAL               A( LDA, * ), TAU( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  SORG2L generates an m by n real matrix Q with orthonormal columns,
*  which is defined as the last n columns of a product of k elementary
*  reflectors of order m
*
*        Q  =  H(k) . . . H(2) H(1)
*
*  as returned by SGEQLF.
*
*  Arguments
*  =========
*
*  M       (input) INTEGER
*          The number of rows of the matrix Q. M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrix Q. M >= N >= 0.
*
*  K       (input) INTEGER
*          The number of elementary reflectors whose product defines the
*          matrix Q. N >= K >= 0.
*
*  A       (input/output) REAL array, dimension (LDA,N)
*          On entry, the (n-k+i)-th column must contain the vector which
*          defines the elementary reflector H(i), for i = 1,2,...,k, as
*          returned by SGEQLF in the last k columns of its array
*          argument A.
*          On exit, the m by n matrix Q.
*
*  LDA     (input) INTEGER
*          The first dimension of the array A. LDA >= max(1,M).
*
*  TAU     (input) REAL array, dimension (K)
*          TAU(i) must contain the scalar factor of the elementary
*          reflector H(i), as returned by SGEQLF.
*
*  WORK    (workspace) REAL array, dimension (N)
*
*  INFO    (output) INTEGER
*          = 0: successful exit
*          < 0: if INFO = -i, the i-th argument has an illegal value
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE, ZERO
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, II, J, L
*     ..
*     .. External Subroutines ..
      EXTERNAL           SLARF, SSCAL, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments
*
      INFO = 0
      IF( M.LT.0 ) THEN
         INFO = -1
      ELSE IF( N.LT.0 .OR. N.GT.M ) THEN
         INFO = -2
      ELSE IF( K.LT.0 .OR. K.GT.N ) THEN
         INFO = -3
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
         INFO = -5
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SORG2L', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.LE.0 )
     $   RETURN
*
*     Initialise columns 1:n-k to columns of the unit matrix
*
      DO 20 J = 1, N - K
         DO 10 L = 1, M
            A( L, J ) = ZERO
   10    CONTINUE
         A( M-N+J, J ) = ONE
   20 CONTINUE
*
      DO 40 I = 1, K
         II = N - K + I
*
*        Apply H(i) to A(1:m-k+i,1:n-k+i) from the left
*
         A( M-N+II, II ) = ONE
         CALL SLARF( 'Left', M-N+II, II-1, A( 1, II ), 1, TAU( I ), A,
     $               LDA, WORK )
         CALL SSCAL( M-N+II-1, -TAU( I ), A( 1, II ), 1 )
         A( M-N+II, II ) = ONE - TAU( I )
*
*        Set A(m-k+i+1:m,n-k+i) to zero
*
         DO 30 L = M - N + II + 1, M
            A( L, II ) = ZERO
   30    CONTINUE
   40 CONTINUE
      RETURN
*
*     End of SORG2L
*
      END
      SUBROUTINE SORG2R( M, N, K, A, LDA, TAU, WORK, INFO )
*
*  -- LAPACK routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     February 29, 1992
*
*     .. Scalar Arguments ..
      INTEGER            INFO, K, LDA, M, N
*     ..
*     .. Array Arguments ..
      REAL               A( LDA, * ), TAU( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  SORG2R generates an m by n real matrix Q with orthonormal columns,
*  which is defined as the first n columns of a product of k elementary
*  reflectors of order m
*
*        Q  =  H(1) H(2) . . . H(k)
*
*  as returned by SGEQRF.
*
*  Arguments
*  =========
*
*  M       (input) INTEGER
*          The number of rows of the matrix Q. M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrix Q. M >= N >= 0.
*
*  K       (input) INTEGER
*          The number of elementary reflectors whose product defines the
*          matrix Q. N >= K >= 0.
*
*  A       (input/output) REAL array, dimension (LDA,N)
*          On entry, the i-th column must contain the vector which
*          defines the elementary reflector H(i), for i = 1,2,...,k, as
*          returned by SGEQRF in the first k columns of its array
*          argument A.
*          On exit, the m-by-n matrix Q.
*
*  LDA     (input) INTEGER
*          The first dimension of the array A. LDA >= max(1,M).
*
*  TAU     (input) REAL array, dimension (K)
*          TAU(i) must contain the scalar factor of the elementary
*          reflector H(i), as returned by SGEQRF.
*
*  WORK    (workspace) REAL array, dimension (N)
*
*  INFO    (output) INTEGER
*          = 0: successful exit
*          < 0: if INFO = -i, the i-th argument has an illegal value
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE, ZERO
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, J, L
*     ..
*     .. External Subroutines ..
      EXTERNAL           SLARF, SSCAL, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments
*
      INFO = 0
      IF( M.LT.0 ) THEN
         INFO = -1
      ELSE IF( N.LT.0 .OR. N.GT.M ) THEN
         INFO = -2
      ELSE IF( K.LT.0 .OR. K.GT.N ) THEN
         INFO = -3
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
         INFO = -5
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SORG2R', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.LE.0 )
     $   RETURN
*
*     Initialise columns k+1:n to columns of the unit matrix
*
      DO 20 J = K + 1, N
         DO 10 L = 1, M
            A( L, J ) = ZERO
   10    CONTINUE
         A( J, J ) = ONE
   20 CONTINUE
*
      DO 40 I = K, 1, -1
*
*        Apply H(i) to A(i:m,i:n) from the left
*
         IF( I.LT.N ) THEN
            A( I, I ) = ONE
            CALL SLARF( 'Left', M-I+1, N-I, A( I, I ), 1, TAU( I ),
     $                  A( I, I+1 ), LDA, WORK )
         END IF
         IF( I.LT.M )
     $      CALL SSCAL( M-I, -TAU( I ), A( I+1, I ), 1 )
         A( I, I ) = ONE - TAU( I )
*
*        Set A(1:i-1,i) to zero
*
         DO 30 L = 1, I - 1
            A( L, I ) = ZERO
   30    CONTINUE
   40 CONTINUE
      RETURN
*
*     End of SORG2R
*
      END
      SUBROUTINE SORGQL( M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
*
*  -- LAPACK routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      INTEGER            INFO, K, LDA, LWORK, M, N
*     ..
*     .. Array Arguments ..
      REAL               A( LDA, * ), TAU( * ), WORK( LWORK )
*     ..
*
*  Purpose
*  =======
*
*  SORGQL generates an M-by-N real matrix Q with orthonormal columns,
*  which is defined as the last N columns of a product of K elementary
*  reflectors of order M
*
*        Q  =  H(k) . . . H(2) H(1)
*
*  as returned by SGEQLF.
*
*  Arguments
*  =========
*
*  M       (input) INTEGER
*          The number of rows of the matrix Q. M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrix Q. M >= N >= 0.
*
*  K       (input) INTEGER
*          The number of elementary reflectors whose product defines the
*          matrix Q. N >= K >= 0.
*
*  A       (input/output) REAL array, dimension (LDA,N)
*          On entry, the (n-k+i)-th column must contain the vector which
*          defines the elementary reflector H(i), for i = 1,2,...,k, as
*          returned by SGEQLF in the last k columns of its array
*          argument A.
*          On exit, the M-by-N matrix Q.
*
*  LDA     (input) INTEGER
*          The first dimension of the array A. LDA >= max(1,M).
*
*  TAU     (input) REAL array, dimension (K)
*          TAU(i) must contain the scalar factor of the elementary
*          reflector H(i), as returned by SGEQLF.
*
*  WORK    (workspace/output) REAL array, dimension (LWORK)
*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK. LWORK >= max(1,N).
*          For optimum performance LWORK >= N*NB, where NB is the
*          optimal blocksize.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument has an illegal value
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO
      PARAMETER          ( ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, IB, IINFO, IWS, J, KK, L, LDWORK, NB, NBMIN,
     $                   NX
*     ..
*     .. External Subroutines ..
      EXTERNAL           SLARFB, SLARFT, SORG2L, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
*     ..
*     .. External Functions ..
      INTEGER            ILAENV
      EXTERNAL           ILAENV
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments
*
      INFO = 0
      IF( M.LT.0 ) THEN
         INFO = -1
      ELSE IF( N.LT.0 .OR. N.GT.M ) THEN
         INFO = -2
      ELSE IF( K.LT.0 .OR. K.GT.N ) THEN
         INFO = -3
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
         INFO = -5
      ELSE IF( LWORK.LT.MAX( 1, N ) ) THEN
         INFO = -8
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SORGQL', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.LE.0 ) THEN
         WORK( 1 ) = 1
         RETURN
      END IF
*
*     Determine the block size.
*
      NB = ILAENV( 1, 'SORGQL', ' ', M, N, K, -1 )
      NBMIN = 2
      NX = 0
      IWS = N
      IF( NB.GT.1 .AND. NB.LT.K ) THEN
*
*        Determine when to cross over from blocked to unblocked code.
*
         NX = MAX( 0, ILAENV( 3, 'SORGQL', ' ', M, N, K, -1 ) )
         IF( NX.LT.K ) THEN
*
*           Determine if workspace is large enough for blocked code.
*
            LDWORK = N
            IWS = LDWORK*NB
            IF( LWORK.LT.IWS ) THEN
*
*              Not enough workspace to use optimal NB:  reduce NB and
*              determine the minimum value of NB.
*
               NB = LWORK / LDWORK
               NBMIN = MAX( 2, ILAENV( 2, 'SORGQL', ' ', M, N, K, -1 ) )
            END IF
         END IF
      END IF
*
      IF( NB.GE.NBMIN .AND. NB.LT.K .AND. NX.LT.K ) THEN
*
*        Use blocked code after the first block.
*        The last kk columns are handled by the block method.
*
         KK = MIN( K, ( ( K-NX+NB-1 ) / NB )*NB )
*
*        Set A(m-kk+1:m,1:n-kk) to zero.
*
         DO 20 J = 1, N - KK
            DO 10 I = M - KK + 1, M
               A( I, J ) = ZERO
   10       CONTINUE
   20    CONTINUE
      ELSE
         KK = 0
      END IF
*
*     Use unblocked code for the first or only block.
*
      CALL SORG2L( M-KK, N-KK, K-KK, A, LDA, TAU, WORK, IINFO )
*
      IF( KK.GT.0 ) THEN
*
*        Use blocked code
*
         DO 50 I = K - KK + 1, K, NB
            IB = MIN( NB, K-I+1 )
            IF( N-K+I.GT.1 ) THEN
*
*              Form the triangular factor of the block reflector
*              H = H(i+ib-1) . . . H(i+1) H(i)
*
               CALL SLARFT( 'Backward', 'Columnwise', M-K+I+IB-1, IB,
     $                      A( 1, N-K+I ), LDA, TAU( I ), WORK, LDWORK )
*
*              Apply H to A(1:m-k+i+ib-1,1:n-k+i-1) from the left
*
               CALL SLARFB( 'Left', 'No transpose', 'Backward',
     $                      'Columnwise', M-K+I+IB-1, N-K+I-1, IB,
     $                      A( 1, N-K+I ), LDA, WORK, LDWORK, A, LDA,
     $                      WORK( IB+1 ), LDWORK )
            END IF
*
*           Apply H to rows 1:m-k+i+ib-1 of current block
*
            CALL SORG2L( M-K+I+IB-1, IB, IB, A( 1, N-K+I ), LDA,
     $                   TAU( I ), WORK, IINFO )
*
*           Set rows m-k+i+ib:m of current block to zero
*
            DO 40 J = N - K + I, N - K + I + IB - 1
               DO 30 L = M - K + I + IB, M
                  A( L, J ) = ZERO
   30          CONTINUE
   40       CONTINUE
   50    CONTINUE
      END IF
*
      WORK( 1 ) = IWS
      RETURN
*
*     End of SORGQL
*
      END
      SUBROUTINE SORGQR( M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
*
*  -- LAPACK routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      INTEGER            INFO, K, LDA, LWORK, M, N
*     ..
*     .. Array Arguments ..
      REAL               A( LDA, * ), TAU( * ), WORK( LWORK )
*     ..
*
*  Purpose
*  =======
*
*  SORGQR generates an M-by-N real matrix Q with orthonormal columns,
*  which is defined as the first N columns of a product of K elementary
*  reflectors of order M
*
*        Q  =  H(1) H(2) . . . H(k)
*
*  as returned by SGEQRF.
*
*  Arguments
*  =========
*
*  M       (input) INTEGER
*          The number of rows of the matrix Q. M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrix Q. M >= N >= 0.
*
*  K       (input) INTEGER
*          The number of elementary reflectors whose product defines the
*          matrix Q. N >= K >= 0.
*
*  A       (input/output) REAL array, dimension (LDA,N)
*          On entry, the i-th column must contain the vector which
*          defines the elementary reflector H(i), for i = 1,2,...,k, as
*          returned by SGEQRF in the first k columns of its array
*          argument A.
*          On exit, the M-by-N matrix Q.
*
*  LDA     (input) INTEGER
*          The first dimension of the array A. LDA >= max(1,M).
*
*  TAU     (input) REAL array, dimension (K)
*          TAU(i) must contain the scalar factor of the elementary
*          reflector H(i), as returned by SGEQRF.
*
*  WORK    (workspace/output) REAL array, dimension (LWORK)
*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK. LWORK >= max(1,N).
*          For optimum performance LWORK >= N*NB, where NB is the
*          optimal blocksize.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument has an illegal value
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO
      PARAMETER          ( ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, IB, IINFO, IWS, J, KI, KK, L, LDWORK, NB,
     $                   NBMIN, NX
*     ..
*     .. External Subroutines ..
      EXTERNAL           SLARFB, SLARFT, SORG2R, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
*     ..
*     .. External Functions ..
      INTEGER            ILAENV
      EXTERNAL           ILAENV
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments
*
      INFO = 0
      IF( M.LT.0 ) THEN
         INFO = -1
      ELSE IF( N.LT.0 .OR. N.GT.M ) THEN
         INFO = -2
      ELSE IF( K.LT.0 .OR. K.GT.N ) THEN
         INFO = -3
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
         INFO = -5
      ELSE IF( LWORK.LT.MAX( 1, N ) ) THEN
         INFO = -8
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SORGQR', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.LE.0 ) THEN
         WORK( 1 ) = 1
         RETURN
      END IF
*
*     Determine the block size.
*
      NB = ILAENV( 1, 'SORGQR', ' ', M, N, K, -1 )
      NBMIN = 2
      NX = 0
      IWS = N
      IF( NB.GT.1 .AND. NB.LT.K ) THEN
*
*        Determine when to cross over from blocked to unblocked code.
*
         NX = MAX( 0, ILAENV( 3, 'SORGQR', ' ', M, N, K, -1 ) )
         IF( NX.LT.K ) THEN
*
*           Determine if workspace is large enough for blocked code.
*
            LDWORK = N
            IWS = LDWORK*NB
            IF( LWORK.LT.IWS ) THEN
*
*              Not enough workspace to use optimal NB:  reduce NB and
*              determine the minimum value of NB.
*
               NB = LWORK / LDWORK
               NBMIN = MAX( 2, ILAENV( 2, 'SORGQR', ' ', M, N, K, -1 ) )
            END IF
         END IF
      END IF
*
      IF( NB.GE.NBMIN .AND. NB.LT.K .AND. NX.LT.K ) THEN
*
*        Use blocked code after the last block.
*        The first kk columns are handled by the block method.
*
         KI = ( ( K-NX-1 ) / NB )*NB
         KK = MIN( K, KI+NB )
*
*        Set A(1:kk,kk+1:n) to zero.
*
         DO 20 J = KK + 1, N
            DO 10 I = 1, KK
               A( I, J ) = ZERO
   10       CONTINUE
   20    CONTINUE
      ELSE
         KK = 0
      END IF
*
*     Use unblocked code for the last or only block.
*
      IF( KK.LT.N )
     $   CALL SORG2R( M-KK, N-KK, K-KK, A( KK+1, KK+1 ), LDA,
     $                TAU( KK+1 ), WORK, IINFO )
*
      IF( KK.GT.0 ) THEN
*
*        Use blocked code
*
         DO 50 I = KI + 1, 1, -NB
            IB = MIN( NB, K-I+1 )
            IF( I+IB.LE.N ) THEN
*
*              Form the triangular factor of the block reflector
*              H = H(i) H(i+1) . . . H(i+ib-1)
*
               CALL SLARFT( 'Forward', 'Columnwise', M-I+1, IB,
     $                      A( I, I ), LDA, TAU( I ), WORK, LDWORK )
*
*              Apply H to A(i:m,i+ib:n) from the left
*
               CALL SLARFB( 'Left', 'No transpose', 'Forward',
     $                      'Columnwise', M-I+1, N-I-IB+1, IB,
     $                      A( I, I ), LDA, WORK, LDWORK, A( I, I+IB ),
     $                      LDA, WORK( IB+1 ), LDWORK )
            END IF
*
*           Apply H to rows i:m of current block
*
            CALL SORG2R( M-I+1, IB, IB, A( I, I ), LDA, TAU( I ), WORK,
     $                   IINFO )
*
*           Set rows 1:i-1 of current block to zero
*
            DO 40 J = I, I + IB - 1
               DO 30 L = 1, I - 1
                  A( L, J ) = ZERO
   30          CONTINUE
   40       CONTINUE
   50    CONTINUE
      END IF
*
      WORK( 1 ) = IWS
      RETURN
*
*     End of SORGQR
*
      END
      SUBROUTINE SORGTR( UPLO, N, A, LDA, TAU, WORK, LWORK, INFO )
*
*  -- LAPACK routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            INFO, LDA, LWORK, N
*     ..
*     .. Array Arguments ..
      REAL               A( LDA, * ), TAU( * ), WORK( LWORK )
*     ..
*
*  Purpose
*  =======
*
*  SORGTR generates a real orthogonal matrix Q which is defined as the
*  product of n-1 elementary reflectors of order N, as returned by
*  SSYTRD:
*
*  if UPLO = 'U', Q = H(n-1) . . . H(2) H(1),
*
*  if UPLO = 'L', Q = H(1) H(2) . . . H(n-1).
*
*  Arguments
*  =========
*
*  UPLO    (input) CHARACTER*1
*          = 'U': Upper triangle of A contains elementary reflectors
*                 from SSYTRD;
*          = 'L': Lower triangle of A contains elementary reflectors
*                 from SSYTRD.
*
*  N       (input) INTEGER
*          The order of the matrix Q. N >= 0.
*
*  A       (input/output) REAL array, dimension (LDA,N)
*          On entry, the vectors which define the elementary reflectors,
*          as returned by SSYTRD.
*          On exit, the N-by-N orthogonal matrix Q.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A. LDA >= max(1,N).
*
*  TAU     (input) REAL array, dimension (N-1)
*          TAU(i) must contain the scalar factor of the elementary
*          reflector H(i), as returned by SSYTRD.
*
*  WORK    (workspace/output) REAL array, dimension (LWORK)
*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK. LWORK >= max(1,N-1).
*          For optimum performance LWORK >= (N-1)*NB, where NB is
*          the optimal blocksize.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            UPPER
      INTEGER            I, IINFO, J
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           SORGQL, SORGQR, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments
*
      INFO = 0
      UPPER = LSAME( UPLO, 'U' )
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -4
      ELSE IF( LWORK.LT.MAX( 1, N-1 ) ) THEN
         INFO = -7
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SORGTR', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 ) THEN
         WORK( 1 ) = 1
         RETURN
      END IF
*
      IF( UPPER ) THEN
*
*        Q was determined by a call to SSYTRD with UPLO = 'U'
*
*        Shift the vectors which define the elementary reflectors one
*        column to the left, and set the last row and column of Q to
*        those of the unit matrix
*
         DO 20 J = 1, N - 1
            DO 10 I = 1, J - 1
               A( I, J ) = A( I, J+1 )
   10       CONTINUE
            A( N, J ) = ZERO
   20    CONTINUE
         DO 30 I = 1, N - 1
            A( I, N ) = ZERO
   30    CONTINUE
         A( N, N ) = ONE
*
*        Generate Q(1:n-1,1:n-1)
*
         CALL SORGQL( N-1, N-1, N-1, A, LDA, TAU, WORK, LWORK, IINFO )
*
      ELSE
*
*        Q was determined by a call to SSYTRD with UPLO = 'L'.
*
*        Shift the vectors which define the elementary reflectors one
*        column to the right, and set the first row and column of Q to
*        those of the unit matrix
*
         DO 50 J = N, 2, -1
            A( 1, J ) = ZERO
            DO 40 I = J + 1, N
               A( I, J ) = A( I, J-1 )
   40       CONTINUE
   50    CONTINUE
         A( 1, 1 ) = ONE
         DO 60 I = 2, N
            A( I, 1 ) = ZERO
   60    CONTINUE
         IF( N.GT.1 ) THEN
*
*           Generate Q(2:n,2:n)
*
            CALL SORGQR( N-1, N-1, N-1, A( 2, 2 ), LDA, TAU, WORK,
     $                   LWORK, IINFO )
         END IF
      END IF
      RETURN
*
*     End of SORGTR
*
      END
      subroutine sscal(n,sa,sx,incx)
c
c     scales a vector by a constant.
c     uses unrolled loops for increment equal to 1.
c     jack dongarra, linpack, 3/11/78.
c     modified 3/93 to return if incx .le. 0.
c     modified 12/3/93, array(1) declarations changed to array(*)
c
      real sa,sx(*)
      integer i,incx,m,mp1,n,nincx
c
      if( n.le.0 .or. incx.le.0 )return
      if(incx.eq.1)go to 20
c
c        code for increment not equal to 1
c
      nincx = n*incx
      do 10 i = 1,nincx,incx
        sx(i) = sa*sx(i)
   10 continue
      return
c
c        code for increment equal to 1
c
c
c        clean-up loop
c
   20 m = mod(n,5)
      if( m .eq. 0 ) go to 40
      do 30 i = 1,m
        sx(i) = sa*sx(i)
   30 continue
      if( n .lt. 5 ) return
   40 mp1 = m + 1
      do 50 i = mp1,n,5
        sx(i) = sa*sx(i)
        sx(i + 1) = sa*sx(i + 1)
        sx(i + 2) = sa*sx(i + 2)
        sx(i + 3) = sa*sx(i + 3)
        sx(i + 4) = sa*sx(i + 4)
   50 continue
      return
      end
      SUBROUTINE SSTEQR( COMPZ, N, D, E, Z, LDZ, WORK, INFO )
*
*  -- LAPACK routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      CHARACTER          COMPZ
      INTEGER            INFO, LDZ, N
*     ..
*     .. Array Arguments ..
      REAL               D( * ), E( * ), WORK( * ), Z( LDZ, * )
*     ..
*
*  Purpose
*  =======
*
*  SSTEQR computes all eigenvalues and, optionally, eigenvectors of a
*  symmetric tridiagonal matrix using the implicit QL or QR method.
*  The eigenvectors of a full or band symmetric matrix can also be found
*  if SSYTRD or SSPTRD or SSBTRD has been used to reduce this matrix to
*  tridiagonal form.
*
*  Arguments
*  =========
*
*  COMPZ   (input) CHARACTER*1
*          = 'N':  Compute eigenvalues only.
*          = 'V':  Compute eigenvalues and eigenvectors of the original
*                  symmetric matrix.  On entry, Z must contain the
*                  orthogonal matrix used to reduce the original matrix
*                  to tridiagonal form.
*          = 'I':  Compute eigenvalues and eigenvectors of the
*                  tridiagonal matrix.  Z is initialized to the identity
*                  matrix.
*
*  N       (input) INTEGER
*          The order of the matrix.  N >= 0.
*
*  D       (input/output) REAL array, dimension (N)
*          On entry, the diagonal elements of the tridiagonal matrix.
*          On exit, if INFO = 0, the eigenvalues in ascending order.
*
*  E       (input/output) REAL array, dimension (N-1)
*          On entry, the (n-1) subdiagonal elements of the tridiagonal
*          matrix.
*          On exit, E has been destroyed.
*
*  Z       (input/output) REAL array, dimension (LDZ, N)
*          On entry, if  COMPZ = 'V', then Z contains the orthogonal
*          matrix used in the reduction to tridiagonal form.
*          On exit, if INFO = 0, then if  COMPZ = 'V', Z contains the
*          orthonormal eigenvectors of the original symmetric matrix,
*          and if COMPZ = 'I', Z contains the orthonormal eigenvectors
*          of the symmetric tridiagonal matrix.
*          If COMPZ = 'N', then Z is not referenced.
*
*  LDZ     (input) INTEGER
*          The leading dimension of the array Z.  LDZ >= 1, and if
*          eigenvectors are desired, then  LDZ >= max(1,N).
*
*  WORK    (workspace) REAL array, dimension (max(1,2*N-2))
*          If COMPZ = 'N', then WORK is not referenced.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*          > 0:  the algorithm has failed to find all the eigenvalues in
*                a total of 30*N iterations; if INFO = i, then i
*                elements of E have not converged to zero; on exit, D
*                and E contain the elements of a symmetric tridiagonal
*                matrix which is orthogonally similar to the original
*                matrix.
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE, TWO, THREE
      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0, TWO = 2.0E0,
     $                   THREE = 3.0E0 )
      INTEGER            MAXIT
      PARAMETER          ( MAXIT = 30 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, ICOMPZ, II, ISCALE, J, JTOT, K, L, L1, LEND,
     $                   LENDM1, LENDP1, LENDSV, LM1, LSV, M, MM, MM1,
     $                   NM1, NMAXIT
      REAL               ANORM, B, C, EPS, EPS2, F, G, P, R, RT1, RT2,
     $                   S, SAFMAX, SAFMIN, SSFMAX, SSFMIN, TST
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      REAL               SLAMCH, SLANST, SLAPY2
      EXTERNAL           LSAME, SLAMCH, SLANST, SLAPY2
*     ..
*     .. External Subroutines ..
      EXTERNAL           SLAE2, SLAEV2, SLARTG, SLASCL, SLASET, SLASR,
     $                   SLASRT, SSWAP, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, SIGN, SQRT
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
*
      IF( LSAME( COMPZ, 'N' ) ) THEN
         ICOMPZ = 0
      ELSE IF( LSAME( COMPZ, 'V' ) ) THEN
         ICOMPZ = 1
      ELSE IF( LSAME( COMPZ, 'I' ) ) THEN
         ICOMPZ = 2
      ELSE
         ICOMPZ = -1
      END IF
      IF( ICOMPZ.LT.0 ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( ( LDZ.LT.1 ) .OR. ( ICOMPZ.GT.0 .AND. LDZ.LT.MAX( 1,
     $         N ) ) ) THEN
         INFO = -6
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SSTEQR', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
      IF( N.EQ.1 ) THEN
         IF( ICOMPZ.EQ.2 )
     $      Z( 1, 1 ) = ONE
         RETURN
      END IF
*
*     Determine the unit roundoff and over/underflow thresholds.
*
      EPS = SLAMCH( 'E' )
      EPS2 = EPS**2
      SAFMIN = SLAMCH( 'S' )
      SAFMAX = ONE / SAFMIN
      SSFMAX = SQRT( SAFMAX ) / THREE
      SSFMIN = SQRT( SAFMIN ) / EPS2
*
*     Compute the eigenvalues and eigenvectors of the tridiagonal
*     matrix.
*
      IF( ICOMPZ.EQ.2 )
     $   CALL SLASET( 'Full', N, N, ZERO, ONE, Z, LDZ )
*
      NMAXIT = N*MAXIT
      JTOT = 0
*
*     Determine where the matrix splits and choose QL or QR iteration
*     for each block, according to whether top or bottom diagonal
*     element is smaller.
*
      L1 = 1
      NM1 = N - 1
*
   10 CONTINUE
      IF( L1.GT.N )
     $   GO TO 160
      IF( L1.GT.1 )
     $   E( L1-1 ) = ZERO
      IF( L1.LE.NM1 ) THEN
         DO 20 M = L1, NM1
            TST = ABS( E( M ) )
            IF( TST.EQ.ZERO )
     $         GO TO 30
            IF( TST.LE.( SQRT( ABS( D( M ) ) )*SQRT( ABS( D( M+
     $          1 ) ) ) )*EPS ) THEN
               E( M ) = ZERO
               GO TO 30
            END IF
   20    CONTINUE
      END IF
      M = N
*
   30 CONTINUE
      L = L1
      LSV = L
      LEND = M
      LENDSV = LEND
      L1 = M + 1
      IF( LEND.EQ.L )
     $   GO TO 10
*
*     Scale submatrix in rows and columns L to LEND
*
      ANORM = SLANST( 'I', LEND-L+1, D( L ), E( L ) )
      ISCALE = 0
      IF( ANORM.EQ.ZERO )
     $   GO TO 10
      IF( ANORM.GT.SSFMAX ) THEN
         ISCALE = 1
         CALL SLASCL( 'G', 0, 0, ANORM, SSFMAX, LEND-L+1, 1, D( L ), N,
     $                INFO )
         CALL SLASCL( 'G', 0, 0, ANORM, SSFMAX, LEND-L, 1, E( L ), N,
     $                INFO )
      ELSE IF( ANORM.LT.SSFMIN ) THEN
         ISCALE = 2
         CALL SLASCL( 'G', 0, 0, ANORM, SSFMIN, LEND-L+1, 1, D( L ), N,
     $                INFO )
         CALL SLASCL( 'G', 0, 0, ANORM, SSFMIN, LEND-L, 1, E( L ), N,
     $                INFO )
      END IF
*
*     Choose between QL and QR iteration
*
      IF( ABS( D( LEND ) ).LT.ABS( D( L ) ) ) THEN
         LEND = LSV
         L = LENDSV
      END IF
*
      IF( LEND.GT.L ) THEN
*
*        QL Iteration
*
*        Look for small subdiagonal element.
*
   40    CONTINUE
         IF( L.NE.LEND ) THEN
            LENDM1 = LEND - 1
            DO 50 M = L, LENDM1
               TST = ABS( E( M ) )**2
               IF( TST.LE.( EPS2*ABS( D( M ) ) )*ABS( D( M+1 ) )+
     $             SAFMIN )GO TO 60
   50       CONTINUE
         END IF
*
         M = LEND
*
   60    CONTINUE
         IF( M.LT.LEND )
     $      E( M ) = ZERO
         P = D( L )
         IF( M.EQ.L )
     $      GO TO 80
*
*        If remaining matrix is 2-by-2, use SLAE2 or SLAEV2
*        to compute its eigensystem.
*
         IF( M.EQ.L+1 ) THEN
            IF( ICOMPZ.GT.0 ) THEN
               CALL SLAEV2( D( L ), E( L ), D( L+1 ), RT1, RT2, C, S )
               WORK( L ) = C
               WORK( N-1+L ) = S
               CALL SLASR( 'R', 'V', 'B', N, 2, WORK( L ),
     $                     WORK( N-1+L ), Z( 1, L ), LDZ )
            ELSE
               CALL SLAE2( D( L ), E( L ), D( L+1 ), RT1, RT2 )
            END IF
            D( L ) = RT1
            D( L+1 ) = RT2
            E( L ) = ZERO
            L = L + 2
            IF( L.LE.LEND )
     $         GO TO 40
            GO TO 140
         END IF
*
         IF( JTOT.EQ.NMAXIT )
     $      GO TO 140
         JTOT = JTOT + 1
*
*        Form shift.
*
         G = ( D( L+1 )-P ) / ( TWO*E( L ) )
         R = SLAPY2( G, ONE )
         G = D( M ) - P + ( E( L ) / ( G+SIGN( R, G ) ) )
*
         S = ONE
         C = ONE
         P = ZERO
*
*        Inner loop
*
         MM1 = M - 1
         DO 70 I = MM1, L, -1
            F = S*E( I )
            B = C*E( I )
            CALL SLARTG( G, F, C, S, R )
            IF( I.NE.M-1 )
     $         E( I+1 ) = R
            G = D( I+1 ) - P
            R = ( D( I )-G )*S + TWO*C*B
            P = S*R
            D( I+1 ) = G + P
            G = C*R - B
*
*           If eigenvectors are desired, then save rotations.
*
            IF( ICOMPZ.GT.0 ) THEN
               WORK( I ) = C
               WORK( N-1+I ) = -S
            END IF
*
   70    CONTINUE
*
*        If eigenvectors are desired, then apply saved rotations.
*
         IF( ICOMPZ.GT.0 ) THEN
            MM = M - L + 1
            CALL SLASR( 'R', 'V', 'B', N, MM, WORK( L ), WORK( N-1+L ),
     $                  Z( 1, L ), LDZ )
         END IF
*
         D( L ) = D( L ) - P
         E( L ) = G
         GO TO 40
*
*        Eigenvalue found.
*
   80    CONTINUE
         D( L ) = P
*
         L = L + 1
         IF( L.LE.LEND )
     $      GO TO 40
         GO TO 140
*
      ELSE
*
*        QR Iteration
*
*        Look for small superdiagonal element.
*
   90    CONTINUE
         IF( L.NE.LEND ) THEN
            LENDP1 = LEND + 1
            DO 100 M = L, LENDP1, -1
               TST = ABS( E( M-1 ) )**2
               IF( TST.LE.( EPS2*ABS( D( M ) ) )*ABS( D( M-1 ) )+
     $             SAFMIN )GO TO 110
  100       CONTINUE
         END IF
*
         M = LEND
*
  110    CONTINUE
         IF( M.GT.LEND )
     $      E( M-1 ) = ZERO
         P = D( L )
         IF( M.EQ.L )
     $      GO TO 130
*
*        If remaining matrix is 2-by-2, use SLAE2 or SLAEV2
*        to compute its eigensystem.
*
         IF( M.EQ.L-1 ) THEN
            IF( ICOMPZ.GT.0 ) THEN
               CALL SLAEV2( D( L-1 ), E( L-1 ), D( L ), RT1, RT2, C, S )
               WORK( M ) = C
               WORK( N-1+M ) = S
               CALL SLASR( 'R', 'V', 'F', N, 2, WORK( M ),
     $                     WORK( N-1+M ), Z( 1, L-1 ), LDZ )
            ELSE
               CALL SLAE2( D( L-1 ), E( L-1 ), D( L ), RT1, RT2 )
            END IF
            D( L-1 ) = RT1
            D( L ) = RT2
            E( L-1 ) = ZERO
            L = L - 2
            IF( L.GE.LEND )
     $         GO TO 90
            GO TO 140
         END IF
*
         IF( JTOT.EQ.NMAXIT )
     $      GO TO 140
         JTOT = JTOT + 1
*
*        Form shift.
*
         G = ( D( L-1 )-P ) / ( TWO*E( L-1 ) )
         R = SLAPY2( G, ONE )
         G = D( M ) - P + ( E( L-1 ) / ( G+SIGN( R, G ) ) )
*
         S = ONE
         C = ONE
         P = ZERO
*
*        Inner loop
*
         LM1 = L - 1
         DO 120 I = M, LM1
            F = S*E( I )
            B = C*E( I )
            CALL SLARTG( G, F, C, S, R )
            IF( I.NE.M )
     $         E( I-1 ) = R
            G = D( I ) - P
            R = ( D( I+1 )-G )*S + TWO*C*B
            P = S*R
            D( I ) = G + P
            G = C*R - B
*
*           If eigenvectors are desired, then save rotations.
*
            IF( ICOMPZ.GT.0 ) THEN
               WORK( I ) = C
               WORK( N-1+I ) = S
            END IF
*
  120    CONTINUE
*
*        If eigenvectors are desired, then apply saved rotations.
*
         IF( ICOMPZ.GT.0 ) THEN
            MM = L - M + 1
            CALL SLASR( 'R', 'V', 'F', N, MM, WORK( M ), WORK( N-1+M ),
     $                  Z( 1, M ), LDZ )
         END IF
*
         D( L ) = D( L ) - P
         E( LM1 ) = G
         GO TO 90
*
*        Eigenvalue found.
*
  130    CONTINUE
         D( L ) = P
*
         L = L - 1
         IF( L.GE.LEND )
     $      GO TO 90
         GO TO 140
*
      END IF
*
*     Undo scaling if necessary
*
  140 CONTINUE
      IF( ISCALE.EQ.1 ) THEN
         CALL SLASCL( 'G', 0, 0, SSFMAX, ANORM, LENDSV-LSV+1, 1,
     $                D( LSV ), N, INFO )
         CALL SLASCL( 'G', 0, 0, SSFMAX, ANORM, LENDSV-LSV, 1, E( LSV ),
     $                N, INFO )
      ELSE IF( ISCALE.EQ.2 ) THEN
         CALL SLASCL( 'G', 0, 0, SSFMIN, ANORM, LENDSV-LSV+1, 1,
     $                D( LSV ), N, INFO )
         CALL SLASCL( 'G', 0, 0, SSFMIN, ANORM, LENDSV-LSV, 1, E( LSV ),
     $                N, INFO )
      END IF
*
*     Check for no convergence to an eigenvalue after a total
*     of N*MAXIT iterations.
*
      IF( JTOT.LT.NMAXIT )
     $   GO TO 10
      DO 150 I = 1, N - 1
         IF( E( I ).NE.ZERO )
     $      INFO = INFO + 1
  150 CONTINUE
      GO TO 190
*
*     Order eigenvalues and eigenvectors.
*
  160 CONTINUE
      IF( ICOMPZ.EQ.0 ) THEN
*
*        Use Quick Sort
*
         CALL SLASRT( 'I', N, D, INFO )
*
      ELSE
*
*        Use Selection Sort to minimize swaps of eigenvectors
*
         DO 180 II = 2, N
            I = II - 1
            K = I
            P = D( I )
            DO 170 J = II, N
               IF( D( J ).LT.P ) THEN
                  K = J
                  P = D( J )
               END IF
  170       CONTINUE
            IF( K.NE.I ) THEN
               D( K ) = D( I )
               D( I ) = P
               CALL SSWAP( N, Z( 1, I ), 1, Z( 1, K ), 1 )
            END IF
  180    CONTINUE
      END IF
*
  190 CONTINUE
      RETURN
*
*     End of SSTEQR
*
      END
      SUBROUTINE SSTERF( N, D, E, INFO )
*
*  -- LAPACK routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      INTEGER            INFO, N
*     ..
*     .. Array Arguments ..
      REAL               D( * ), E( * )
*     ..
*
*  Purpose
*  =======
*
*  SSTERF computes all eigenvalues of a symmetric tridiagonal matrix
*  using the Pal-Walker-Kahan variant of the QL or QR algorithm.
*
*  Arguments
*  =========
*
*  N       (input) INTEGER
*          The order of the matrix.  N >= 0.
*
*  D       (input/output) REAL array, dimension (N)
*          On entry, the n diagonal elements of the tridiagonal matrix.
*          On exit, if INFO = 0, the eigenvalues in ascending order.
*
*  E       (input/output) REAL array, dimension (N-1)
*          On entry, the (n-1) subdiagonal elements of the tridiagonal
*          matrix.
*          On exit, E has been destroyed.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*          > 0:  the algorithm failed to find all of the eigenvalues in
*                a total of 30*N iterations; if INFO = i, then i
*                elements of E have not converged to zero.
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE, TWO, THREE
      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0, TWO = 2.0E0,
     $                   THREE = 3.0E0 )
      INTEGER            MAXIT
      PARAMETER          ( MAXIT = 30 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, ISCALE, JTOT, L, L1, LEND, LENDM1, LENDP1,
     $                   LENDSV, LM1, LSV, M, MM1, NM1, NMAXIT
      REAL               ALPHA, ANORM, BB, C, EPS, EPS2, GAMMA, OLDC,
     $                   OLDGAM, P, R, RT1, RT2, RTE, S, SAFMAX, SAFMIN,
     $                   SIGMA, SSFMAX, SSFMIN, TST
*     ..
*     .. External Functions ..
      REAL               SLAMCH, SLANST, SLAPY2
      EXTERNAL           SLAMCH, SLANST, SLAPY2
*     ..
*     .. External Subroutines ..
      EXTERNAL           SLAE2, SLASCL, SLASRT, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, SIGN, SQRT
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
*
*     Quick return if possible
*
      IF( N.LT.0 ) THEN
         INFO = -1
         CALL XERBLA( 'SSTERF', -INFO )
         RETURN
      END IF
      IF( N.LE.1 )
     $   RETURN
*
*     Determine the unit roundoff for this environment.
*
      EPS = SLAMCH( 'E' )
      EPS2 = EPS**2
      SAFMIN = SLAMCH( 'S' )
      SAFMAX = ONE / SAFMIN
      SSFMAX = SQRT( SAFMAX ) / THREE
      SSFMIN = SQRT( SAFMIN ) / EPS2
*
*     Compute the eigenvalues of the tridiagonal matrix.
*
      NMAXIT = N*MAXIT
      SIGMA = ZERO
      JTOT = 0
*
*     Determine where the matrix splits and choose QL or QR iteration
*     for each block, according to whether top or bottom diagonal
*     element is smaller.
*
      L1 = 1
      NM1 = N - 1
*
   10 CONTINUE
      IF( L1.GT.N )
     $   GO TO 170
      IF( L1.GT.1 )
     $   E( L1-1 ) = ZERO
      IF( L1.LE.NM1 ) THEN
         DO 20 M = L1, NM1
            TST = ABS( E( M ) )
            IF( TST.EQ.ZERO )
     $         GO TO 30
            IF( TST.LE.( SQRT( ABS( D( M ) ) )*SQRT( ABS( D( M+
     $          1 ) ) ) )*EPS ) THEN
               E( M ) = ZERO
               GO TO 30
            END IF
   20    CONTINUE
      END IF
      M = N
*
   30 CONTINUE
      L = L1
      LSV = L
      LEND = M
      LENDSV = LEND
      L1 = M + 1
      IF( LEND.EQ.L )
     $   GO TO 10
*
*     Scale submatrix in rows and columns L to LEND
*
      ANORM = SLANST( 'I', LEND-L+1, D( L ), E( L ) )
      ISCALE = 0
      IF( ANORM.GT.SSFMAX ) THEN
         ISCALE = 1
         CALL SLASCL( 'G', 0, 0, ANORM, SSFMAX, LEND-L+1, 1, D( L ), N,
     $                INFO )
         CALL SLASCL( 'G', 0, 0, ANORM, SSFMAX, LEND-L, 1, E( L ), N,
     $                INFO )
      ELSE IF( ANORM.LT.SSFMIN ) THEN
         ISCALE = 2
         CALL SLASCL( 'G', 0, 0, ANORM, SSFMIN, LEND-L+1, 1, D( L ), N,
     $                INFO )
         CALL SLASCL( 'G', 0, 0, ANORM, SSFMIN, LEND-L, 1, E( L ), N,
     $                INFO )
      END IF
*
      DO 40 I = L, LEND - 1
         E( I ) = E( I )**2
   40 CONTINUE
*
*     Choose between QL and QR iteration
*
      IF( ABS( D( LEND ) ).LT.ABS( D( L ) ) ) THEN
         LEND = LSV
         L = LENDSV
      END IF
*
      IF( LEND.GE.L ) THEN
*
*        QL Iteration
*
*        Look for small subdiagonal element.
*
   50    CONTINUE
         IF( L.NE.LEND ) THEN
            LENDM1 = LEND - 1
            DO 60 M = L, LENDM1
               TST = ABS( E( M ) )
               IF( TST.LE. EPS2*ABS( D( M ) * D( M+1 ) ) )GO TO 70
   60       CONTINUE
         END IF
*
         M = LEND
*
   70    CONTINUE
         IF( M.LT.LEND )
     $      E( M ) = ZERO
         P = D( L )
         IF( M.EQ.L )
     $      GO TO 90
*
*        If remaining matrix is 2 by 2, use SLAE2 to compute its
*        eigenvalues.
*
         IF( M.EQ.L+1 ) THEN
            RTE = SQRT( E( L ) )
            CALL SLAE2( D( L ), RTE, D( L+1 ), RT1, RT2 )
            D( L ) = RT1
            D( L+1 ) = RT2
            E( L ) = ZERO
            L = L + 2
            IF( L.LE.LEND )
     $         GO TO 50
            GO TO 150
         END IF
*
         IF( JTOT.EQ.NMAXIT )
     $      GO TO 150
         JTOT = JTOT + 1
*
*        Form shift.
*
         RTE = SQRT( E( L ) )
         SIGMA = ( D( L+1 )-P ) / ( TWO*RTE )
         R = SLAPY2( SIGMA, ONE )
         SIGMA = P - ( RTE / ( SIGMA+SIGN( R, SIGMA ) ) )
*
         C = ONE
         S = ZERO
         GAMMA = D( M ) - SIGMA
         P = GAMMA*GAMMA
*
*        Inner loop
*
         MM1 = M - 1
         DO 80 I = MM1, L, -1
            BB = E( I )
            R = P + BB
            IF( I.NE.M-1 )
     $         E( I+1 ) = S*R
            OLDC = C
            C = P / R
            S = BB / R
            OLDGAM = GAMMA
            ALPHA = D( I )
            GAMMA = C*( ALPHA-SIGMA ) - S*OLDGAM
            D( I+1 ) = OLDGAM + ( ALPHA-GAMMA )
            IF( C.NE.ZERO ) THEN
               P = ( GAMMA*GAMMA ) / C
            ELSE
               P = OLDC*BB
            END IF
   80    CONTINUE
*
         E( L ) = S*P
         D( L ) = SIGMA + GAMMA
         GO TO 50
*
*        Eigenvalue found.
*
   90    CONTINUE
         D( L ) = P
*
         L = L + 1
         IF( L.LE.LEND )
     $      GO TO 50
         GO TO 150
*
      ELSE
*
*        QR Iteration
*
*        Look for small superdiagonal element.
*
  100    CONTINUE
         IF( L.NE.LEND ) THEN
            LENDP1 = LEND + 1
            DO 110 M = L, LENDP1, -1
               TST = ABS( E( M-1 ) )
               IF( TST.LE. EPS2*ABS( D( M ) * D( M-1 ) ) )GO TO 120
  110       CONTINUE
         END IF
*
         M = LEND
*
  120    CONTINUE
         IF( M.GT.LEND )
     $      E( M-1 ) = ZERO
         P = D( L )
         IF( M.EQ.L )
     $      GO TO 140
*
*        If remaining matrix is 2 by 2, use SLAE2 to compute its
*        eigenvalues.
*
         IF( M.EQ.L-1 ) THEN
            RTE = SQRT( E( L-1 ) )
            CALL SLAE2( D( L ), RTE, D( L-1 ), RT1, RT2 )
            D( L ) = RT1
            D( L-1 ) = RT2
            E( L-1 ) = ZERO
            L = L - 2
            IF( L.GE.LEND )
     $         GO TO 100
            GO TO 150
         END IF
*
         IF( JTOT.EQ.NMAXIT )
     $      GO TO 150
         JTOT = JTOT + 1
*
*        Form shift.
*
         RTE = SQRT( E( L-1 ) )
         SIGMA = ( D( L-1 )-P ) / ( TWO*RTE )
         R = SLAPY2( SIGMA, ONE )
         SIGMA = P - ( RTE / ( SIGMA+SIGN( R, SIGMA ) ) )
*
         C = ONE
         S = ZERO
         GAMMA = D( M ) - SIGMA
         P = GAMMA*GAMMA
*
*        Inner loop
*
         LM1 = L - 1
         DO 130 I = M, LM1
            BB = E( I )
            R = P + BB
            IF( I.NE.M )
     $         E( I-1 ) = S*R
            OLDC = C
            C = P / R
            S = BB / R
            OLDGAM = GAMMA
            ALPHA = D( I+1 )
            GAMMA = C*( ALPHA-SIGMA ) - S*OLDGAM
            D( I ) = OLDGAM + ( ALPHA-GAMMA )
            IF( C.NE.ZERO ) THEN
               P = ( GAMMA*GAMMA ) / C
            ELSE
               P = OLDC*BB
            END IF
  130    CONTINUE
*
         E( LM1 ) = S*P
         D( L ) = SIGMA + GAMMA
         GO TO 100
*
*        Eigenvalue found.
*
  140    CONTINUE
         D( L ) = P
*
         L = L - 1
         IF( L.GE.LEND )
     $      GO TO 100
         GO TO 150
*
      END IF
*
*     Undo scaling if necessary
*
  150 CONTINUE
      IF( ISCALE.EQ.1 )
     $   CALL SLASCL( 'G', 0, 0, SSFMAX, ANORM, LENDSV-LSV+1, 1,
     $                D( LSV ), N, INFO )
      IF( ISCALE.EQ.2 )
     $   CALL SLASCL( 'G', 0, 0, SSFMIN, ANORM, LENDSV-LSV+1, 1,
     $                D( LSV ), N, INFO )
*
*     Check for no convergence to an eigenvalue after a total
*     of N*MAXIT iterations.
*
      IF( JTOT.EQ.NMAXIT ) THEN
         DO 160 I = 1, N - 1
            IF( E( I ).NE.ZERO )
     $         INFO = INFO + 1
  160    CONTINUE
         RETURN
      END IF
      GO TO 10
*
*     Sort eigenvalues in increasing order.
*
  170 CONTINUE
      CALL SLASRT( 'I', N, D, INFO )
*
      RETURN
*
*     End of SSTERF
*
      END
      subroutine sswap (n,sx,incx,sy,incy)
c
c     interchanges two vectors.
c     uses unrolled loops for increments equal to 1.
c     jack dongarra, linpack, 3/11/78.
c     modified 12/3/93, array(1) declarations changed to array(*)
c
      real sx(*),sy(*),stemp
      integer i,incx,incy,ix,iy,m,mp1,n
c
      if(n.le.0)return
      if(incx.eq.1.and.incy.eq.1)go to 20
c
c       code for unequal increments or equal increments not equal
c         to 1
c
      ix = 1
      iy = 1
      if(incx.lt.0)ix = (-n+1)*incx + 1
      if(incy.lt.0)iy = (-n+1)*incy + 1
      do 10 i = 1,n
        stemp = sx(ix)
        sx(ix) = sy(iy)
        sy(iy) = stemp
        ix = ix + incx
        iy = iy + incy
   10 continue
      return
c
c       code for both increments equal to 1
c
c
c       clean-up loop
c
   20 m = mod(n,3)
      if( m .eq. 0 ) go to 40
      do 30 i = 1,m
        stemp = sx(i)
        sx(i) = sy(i)
        sy(i) = stemp
   30 continue
      if( n .lt. 3 ) return
   40 mp1 = m + 1
      do 50 i = mp1,n,3
        stemp = sx(i)
        sx(i) = sy(i)
        sy(i) = stemp
        stemp = sx(i + 1)
        sx(i + 1) = sy(i + 1)
        sy(i + 1) = stemp
        stemp = sx(i + 2)
        sx(i + 2) = sy(i + 2)
        sy(i + 2) = stemp
   50 continue
      return
      end
      SUBROUTINE SSYEV( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, INFO )
*
*  -- LAPACK driver routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      CHARACTER          JOBZ, UPLO
      INTEGER            INFO, LDA, LWORK, N
*     ..
*     .. Array Arguments ..
      REAL               A( LDA, * ), W( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  SSYEV computes all eigenvalues and, optionally, eigenvectors of a
*  real symmetric matrix A.
*
*  Arguments
*  =========
*
*  JOBZ    (input) CHARACTER*1
*          = 'N':  Compute eigenvalues only;
*          = 'V':  Compute eigenvalues and eigenvectors.
*
*  UPLO    (input) CHARACTER*1
*          = 'U':  Upper triangle of A is stored;
*          = 'L':  Lower triangle of A is stored.
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  A       (input/output) REAL array, dimension (LDA, N)
*          On entry, the symmetric matrix A.  If UPLO = 'U', the
*          leading N-by-N upper triangular part of A contains the
*          upper triangular part of the matrix A.  If UPLO = 'L',
*          the leading N-by-N lower triangular part of A contains
*          the lower triangular part of the matrix A.
*          On exit, if JOBZ = 'V', then if INFO = 0, A contains the
*          orthonormal eigenvectors of the matrix A.
*          If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
*          or the upper triangle (if UPLO='U') of A, including the
*          diagonal, is destroyed.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N).
*
*  W       (output) REAL array, dimension (N)
*          If INFO = 0, the eigenvalues in ascending order.
*
*  WORK    (workspace/output) REAL array, dimension (LWORK)
*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
*  LWORK   (input) INTEGER
*          The length of the array WORK.  LWORK >= max(1,3*N-1).
*          For optimal efficiency, LWORK >= (NB+2)*N,
*          where NB is the blocksize for SSYTRD returned by ILAENV.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*          > 0:  if INFO = i, the algorithm failed to converge; i
*                off-diagonal elements of an intermediate tridiagonal
*                form did not converge to zero.
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            LOWER, WANTZ
      INTEGER            IINFO, IMAX, INDE, INDTAU, INDWRK, ISCALE,
     $                   LLWORK, LOPT
      REAL               ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
     $                   SMLNUM
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      REAL               SLAMCH, SLANSY
      EXTERNAL           LSAME, SLAMCH, SLANSY
*     ..
*     .. External Subroutines ..
      EXTERNAL           SLASCL, SORGTR, SSCAL, SSTEQR, SSTERF, SSYTRD,
     $                   XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, SQRT
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      WANTZ = LSAME( JOBZ, 'V' )
      LOWER = LSAME( UPLO, 'L' )
*
      INFO = 0
      IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
         INFO = -1
      ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -5
      ELSE IF( LWORK.LT.MAX( 1, 3*N-1 ) ) THEN
         INFO = -8
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SSYEV ', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 ) THEN
         WORK( 1 ) = 1
         RETURN
      END IF
*
      IF( N.EQ.1 ) THEN
         W( 1 ) = A( 1, 1 )
         WORK( 1 ) = 3
         IF( WANTZ )
     $      A( 1, 1 ) = ONE
         RETURN
      END IF
*
*     Get machine constants.
*
      SAFMIN = SLAMCH( 'Safe minimum' )
      EPS = SLAMCH( 'Precision' )
      SMLNUM = SAFMIN / EPS
      BIGNUM = ONE / SMLNUM
      RMIN = SQRT( SMLNUM )
      RMAX = SQRT( BIGNUM )
*
*     Scale matrix to allowable range, if necessary.
*
      ANRM = SLANSY( 'M', UPLO, N, A, LDA, WORK )
      ISCALE = 0
      IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
         ISCALE = 1
         SIGMA = RMIN / ANRM
      ELSE IF( ANRM.GT.RMAX ) THEN
         ISCALE = 1
         SIGMA = RMAX / ANRM
      END IF
      IF( ISCALE.EQ.1 )
     $   CALL SLASCL( UPLO, 0, 0, ONE, SIGMA, N, N, A, LDA, INFO )
*
*     Call SSYTRD to reduce symmetric matrix to tridiagonal form.
*
      INDE = 1
      INDTAU = INDE + N
      INDWRK = INDTAU + N
      LLWORK = LWORK - INDWRK + 1
      CALL SSYTRD( UPLO, N, A, LDA, W, WORK( INDE ), WORK( INDTAU ),
     $             WORK( INDWRK ), LLWORK, IINFO )
      LOPT = 2*N + WORK( INDWRK )
*
*     For eigenvalues only, call SSTERF.  For eigenvectors, first call
*     SORGTR to generate the orthogonal matrix, then call SSTEQR.
*
      IF( .NOT.WANTZ ) THEN
         CALL SSTERF( N, W, WORK( INDE ), INFO )
      ELSE
         CALL SORGTR( UPLO, N, A, LDA, WORK( INDTAU ), WORK( INDWRK ),
     $                LLWORK, IINFO )
         CALL SSTEQR( JOBZ, N, W, WORK( INDE ), A, LDA, WORK( INDTAU ),
     $                INFO )
      END IF
*
*     If matrix was scaled, then rescale eigenvalues appropriately.
*
      IF( ISCALE.EQ.1 ) THEN
         IF( INFO.EQ.0 ) THEN
            IMAX = N
         ELSE
            IMAX = INFO - 1
         END IF
         CALL SSCAL( IMAX, ONE / SIGMA, W, 1 )
      END IF
*
*     Set WORK(1) to optimal workspace size.
*
      WORK( 1 ) = MAX( 3*N-1, LOPT )
*
      RETURN
*
*     End of SSYEV
*
      END
      SUBROUTINE SSYMV ( UPLO, N, ALPHA, A, LDA, X, INCX,
     $                   BETA, Y, INCY )
*     .. Scalar Arguments ..
      REAL               ALPHA, BETA
      INTEGER            INCX, INCY, LDA, N
      CHARACTER*1        UPLO
*     .. Array Arguments ..
      REAL               A( LDA, * ), X( * ), Y( * )
*     ..
*
*  Purpose
*  =======
*
*  SSYMV  performs the matrix-vector  operation
*
*     y := alpha*A*x + beta*y,
*
*  where alpha and beta are scalars, x and y are n element vectors and
*  A is an n by n symmetric matrix.
*
*  Parameters
*  ==========
*
*  UPLO   - CHARACTER*1.
*           On entry, UPLO specifies whether the upper or lower
*           triangular part of the array A is to be referenced as
*           follows:
*
*              UPLO = 'U' or 'u'   Only the upper triangular part of A
*                                  is to be referenced.
*
*              UPLO = 'L' or 'l'   Only the lower triangular part of A
*                                  is to be referenced.
*
*           Unchanged on exit.
*
*  N      - INTEGER.
*           On entry, N specifies the order of the matrix A.
*           N must be at least zero.
*           Unchanged on exit.
*
*  ALPHA  - REAL            .
*           On entry, ALPHA specifies the scalar alpha.
*           Unchanged on exit.
*
*  A      - REAL             array of DIMENSION ( LDA, n ).
*           Before entry with  UPLO = 'U' or 'u', the leading n by n
*           upper triangular part of the array A must contain the upper
*           triangular part of the symmetric matrix and the strictly
*           lower triangular part of A is not referenced.
*           Before entry with UPLO = 'L' or 'l', the leading n by n
*           lower triangular part of the array A must contain the lower
*           triangular part of the symmetric matrix and the strictly
*           upper triangular part of A is not referenced.
*           Unchanged on exit.
*
*  LDA    - INTEGER.
*           On entry, LDA specifies the first dimension of A as declared
*           in the calling (sub) program. LDA must be at least
*           max( 1, n ).
*           Unchanged on exit.
*
*  X      - REAL             array of dimension at least
*           ( 1 + ( n - 1 )*abs( INCX ) ).
*           Before entry, the incremented array X must contain the n
*           element vector x.
*           Unchanged on exit.
*
*  INCX   - INTEGER.
*           On entry, INCX specifies the increment for the elements of
*           X. INCX must not be zero.
*           Unchanged on exit.
*
*  BETA   - REAL            .
*           On entry, BETA specifies the scalar beta. When BETA is
*           supplied as zero then Y need not be set on input.
*           Unchanged on exit.
*
*  Y      - REAL             array of dimension at least
*           ( 1 + ( n - 1 )*abs( INCY ) ).
*           Before entry, the incremented array Y must contain the n
*           element vector y. On exit, Y is overwritten by the updated
*           vector y.
*
*  INCY   - INTEGER.
*           On entry, INCY specifies the increment for the elements of
*           Y. INCY must not be zero.
*           Unchanged on exit.
*
*
*  Level 2 Blas routine.
*
*  -- Written on 22-October-1986.
*     Jack Dongarra, Argonne National Lab.
*     Jeremy Du Croz, Nag Central Office.
*     Sven Hammarling, Nag Central Office.
*     Richard Hanson, Sandia National Labs.
*
*
*     .. Parameters ..
      REAL               ONE         , ZERO
      PARAMETER        ( ONE = 1.0E+0, ZERO = 0.0E+0 )
*     .. Local Scalars ..
      REAL               TEMP1, TEMP2
      INTEGER            I, INFO, IX, IY, J, JX, JY, KX, KY
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      IF     ( .NOT.LSAME( UPLO, 'U' ).AND.
     $         .NOT.LSAME( UPLO, 'L' )      )THEN
         INFO = 1
      ELSE IF( N.LT.0 )THEN
         INFO = 2
      ELSE IF( LDA.LT.MAX( 1, N ) )THEN
         INFO = 5
      ELSE IF( INCX.EQ.0 )THEN
         INFO = 7
      ELSE IF( INCY.EQ.0 )THEN
         INFO = 10
      END IF
      IF( INFO.NE.0 )THEN
         CALL XERBLA( 'SSYMV ', INFO )
         RETURN
      END IF
*
*     Quick return if possible.
*
      IF( ( N.EQ.0 ).OR.( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
     $   RETURN
*
*     Set up the start points in  X  and  Y.
*
      IF( INCX.GT.0 )THEN
         KX = 1
      ELSE
         KX = 1 - ( N - 1 )*INCX
      END IF
      IF( INCY.GT.0 )THEN
         KY = 1
      ELSE
         KY = 1 - ( N - 1 )*INCY
      END IF
*
*     Start the operations. In this version the elements of A are
*     accessed sequentially with one pass through the triangular part
*     of A.
*
*     First form  y := beta*y.
*
      IF( BETA.NE.ONE )THEN
         IF( INCY.EQ.1 )THEN
            IF( BETA.EQ.ZERO )THEN
               DO 10, I = 1, N
                  Y( I ) = ZERO
   10          CONTINUE
            ELSE
               DO 20, I = 1, N
                  Y( I ) = BETA*Y( I )
   20          CONTINUE
            END IF
         ELSE
            IY = KY
            IF( BETA.EQ.ZERO )THEN
               DO 30, I = 1, N
                  Y( IY ) = ZERO
                  IY      = IY   + INCY
   30          CONTINUE
            ELSE
               DO 40, I = 1, N
                  Y( IY ) = BETA*Y( IY )
                  IY      = IY           + INCY
   40          CONTINUE
            END IF
         END IF
      END IF
      IF( ALPHA.EQ.ZERO )
     $   RETURN
      IF( LSAME( UPLO, 'U' ) )THEN
*
*        Form  y  when A is stored in upper triangle.
*
         IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
            DO 60, J = 1, N
               TEMP1 = ALPHA*X( J )
               TEMP2 = ZERO
               DO 50, I = 1, J - 1
                  Y( I ) = Y( I ) + TEMP1*A( I, J )
                  TEMP2  = TEMP2  + A( I, J )*X( I )
   50          CONTINUE
               Y( J ) = Y( J ) + TEMP1*A( J, J ) + ALPHA*TEMP2
   60       CONTINUE
         ELSE
            JX = KX
            JY = KY
            DO 80, J = 1, N
               TEMP1 = ALPHA*X( JX )
               TEMP2 = ZERO
               IX    = KX
               IY    = KY
               DO 70, I = 1, J - 1
                  Y( IY ) = Y( IY ) + TEMP1*A( I, J )
                  TEMP2   = TEMP2   + A( I, J )*X( IX )
                  IX      = IX      + INCX
                  IY      = IY      + INCY
   70          CONTINUE
               Y( JY ) = Y( JY ) + TEMP1*A( J, J ) + ALPHA*TEMP2
               JX      = JX      + INCX
               JY      = JY      + INCY
   80       CONTINUE
         END IF
      ELSE
*
*        Form  y  when A is stored in lower triangle.
*
         IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
            DO 100, J = 1, N
               TEMP1  = ALPHA*X( J )
               TEMP2  = ZERO
               Y( J ) = Y( J )       + TEMP1*A( J, J )
               DO 90, I = J + 1, N
                  Y( I ) = Y( I ) + TEMP1*A( I, J )
                  TEMP2  = TEMP2  + A( I, J )*X( I )
   90          CONTINUE
               Y( J ) = Y( J ) + ALPHA*TEMP2
  100       CONTINUE
         ELSE
            JX = KX
            JY = KY
            DO 120, J = 1, N
               TEMP1   = ALPHA*X( JX )
               TEMP2   = ZERO
               Y( JY ) = Y( JY )       + TEMP1*A( J, J )
               IX      = JX
               IY      = JY
               DO 110, I = J + 1, N
                  IX      = IX      + INCX
                  IY      = IY      + INCY
                  Y( IY ) = Y( IY ) + TEMP1*A( I, J )
                  TEMP2   = TEMP2   + A( I, J )*X( IX )
  110          CONTINUE
               Y( JY ) = Y( JY ) + ALPHA*TEMP2
               JX      = JX      + INCX
               JY      = JY      + INCY
  120       CONTINUE
         END IF
      END IF
*
      RETURN
*
*     End of SSYMV .
*
      END
      SUBROUTINE SSYR2 ( UPLO, N, ALPHA, X, INCX, Y, INCY, A, LDA )
*     .. Scalar Arguments ..
      REAL               ALPHA
      INTEGER            INCX, INCY, LDA, N
      CHARACTER*1        UPLO
*     .. Array Arguments ..
      REAL               A( LDA, * ), X( * ), Y( * )
*     ..
*
*  Purpose
*  =======
*
*  SSYR2  performs the symmetric rank 2 operation
*
*     A := alpha*x*y' + alpha*y*x' + A,
*
*  where alpha is a scalar, x and y are n element vectors and A is an n
*  by n symmetric matrix.
*
*  Parameters
*  ==========
*
*  UPLO   - CHARACTER*1.
*           On entry, UPLO specifies whether the upper or lower
*           triangular part of the array A is to be referenced as
*           follows:
*
*              UPLO = 'U' or 'u'   Only the upper triangular part of A
*                                  is to be referenced.
*
*              UPLO = 'L' or 'l'   Only the lower triangular part of A
*                                  is to be referenced.
*
*           Unchanged on exit.
*
*  N      - INTEGER.
*           On entry, N specifies the order of the matrix A.
*           N must be at least zero.
*           Unchanged on exit.
*
*  ALPHA  - REAL            .
*           On entry, ALPHA specifies the scalar alpha.
*           Unchanged on exit.
*
*  X      - REAL             array of dimension at least
*           ( 1 + ( n - 1 )*abs( INCX ) ).
*           Before entry, the incremented array X must contain the n
*           element vector x.
*           Unchanged on exit.
*
*  INCX   - INTEGER.
*           On entry, INCX specifies the increment for the elements of
*           X. INCX must not be zero.
*           Unchanged on exit.
*
*  Y      - REAL             array of dimension at least
*           ( 1 + ( n - 1 )*abs( INCY ) ).
*           Before entry, the incremented array Y must contain the n
*           element vector y.
*           Unchanged on exit.
*
*  INCY   - INTEGER.
*           On entry, INCY specifies the increment for the elements of
*           Y. INCY must not be zero.
*           Unchanged on exit.
*
*  A      - REAL             array of DIMENSION ( LDA, n ).
*           Before entry with  UPLO = 'U' or 'u', the leading n by n
*           upper triangular part of the array A must contain the upper
*           triangular part of the symmetric matrix and the strictly
*           lower triangular part of A is not referenced. On exit, the
*           upper triangular part of the array A is overwritten by the
*           upper triangular part of the updated matrix.
*           Before entry with UPLO = 'L' or 'l', the leading n by n
*           lower triangular part of the array A must contain the lower
*           triangular part of the symmetric matrix and the strictly
*           upper triangular part of A is not referenced. On exit, the
*           lower triangular part of the array A is overwritten by the
*           lower triangular part of the updated matrix.
*
*  LDA    - INTEGER.
*           On entry, LDA specifies the first dimension of A as declared
*           in the calling (sub) program. LDA must be at least
*           max( 1, n ).
*           Unchanged on exit.
*
*
*  Level 2 Blas routine.
*
*  -- Written on 22-October-1986.
*     Jack Dongarra, Argonne National Lab.
*     Jeremy Du Croz, Nag Central Office.
*     Sven Hammarling, Nag Central Office.
*     Richard Hanson, Sandia National Labs.
*
*
*     .. Parameters ..
      REAL               ZERO
      PARAMETER        ( ZERO = 0.0E+0 )
*     .. Local Scalars ..
      REAL               TEMP1, TEMP2
      INTEGER            I, INFO, IX, IY, J, JX, JY, KX, KY
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      IF     ( .NOT.LSAME( UPLO, 'U' ).AND.
     $         .NOT.LSAME( UPLO, 'L' )      )THEN
         INFO = 1
      ELSE IF( N.LT.0 )THEN
         INFO = 2
      ELSE IF( INCX.EQ.0 )THEN
         INFO = 5
      ELSE IF( INCY.EQ.0 )THEN
         INFO = 7
      ELSE IF( LDA.LT.MAX( 1, N ) )THEN
         INFO = 9
      END IF
      IF( INFO.NE.0 )THEN
         CALL XERBLA( 'SSYR2 ', INFO )
         RETURN
      END IF
*
*     Quick return if possible.
*
      IF( ( N.EQ.0 ).OR.( ALPHA.EQ.ZERO ) )
     $   RETURN
*
*     Set up the start points in X and Y if the increments are not both
*     unity.
*
      IF( ( INCX.NE.1 ).OR.( INCY.NE.1 ) )THEN
         IF( INCX.GT.0 )THEN
            KX = 1
         ELSE
            KX = 1 - ( N - 1 )*INCX
         END IF
         IF( INCY.GT.0 )THEN
            KY = 1
         ELSE
            KY = 1 - ( N - 1 )*INCY
         END IF
         JX = KX
         JY = KY
      END IF
*
*     Start the operations. In this version the elements of A are
*     accessed sequentially with one pass through the triangular part
*     of A.
*
      IF( LSAME( UPLO, 'U' ) )THEN
*
*        Form  A  when A is stored in the upper triangle.
*
         IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
            DO 20, J = 1, N
               IF( ( X( J ).NE.ZERO ).OR.( Y( J ).NE.ZERO ) )THEN
                  TEMP1 = ALPHA*Y( J )
                  TEMP2 = ALPHA*X( J )
                  DO 10, I = 1, J
                     A( I, J ) = A( I, J ) + X( I )*TEMP1 + Y( I )*TEMP2
   10             CONTINUE
               END IF
   20       CONTINUE
         ELSE
            DO 40, J = 1, N
               IF( ( X( JX ).NE.ZERO ).OR.( Y( JY ).NE.ZERO ) )THEN
                  TEMP1 = ALPHA*Y( JY )
                  TEMP2 = ALPHA*X( JX )
                  IX    = KX
                  IY    = KY
                  DO 30, I = 1, J
                     A( I, J ) = A( I, J ) + X( IX )*TEMP1
     $                                     + Y( IY )*TEMP2
                     IX        = IX        + INCX
                     IY        = IY        + INCY
   30             CONTINUE
               END IF
               JX = JX + INCX
               JY = JY + INCY
   40       CONTINUE
         END IF
      ELSE
*
*        Form  A  when A is stored in the lower triangle.
*
         IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
            DO 60, J = 1, N
               IF( ( X( J ).NE.ZERO ).OR.( Y( J ).NE.ZERO ) )THEN
                  TEMP1 = ALPHA*Y( J )
                  TEMP2 = ALPHA*X( J )
                  DO 50, I = J, N
                     A( I, J ) = A( I, J ) + X( I )*TEMP1 + Y( I )*TEMP2
   50             CONTINUE
               END IF
   60       CONTINUE
         ELSE
            DO 80, J = 1, N
               IF( ( X( JX ).NE.ZERO ).OR.( Y( JY ).NE.ZERO ) )THEN
                  TEMP1 = ALPHA*Y( JY )
                  TEMP2 = ALPHA*X( JX )
                  IX    = JX
                  IY    = JY
                  DO 70, I = J, N
                     A( I, J ) = A( I, J ) + X( IX )*TEMP1
     $                                     + Y( IY )*TEMP2
                     IX        = IX        + INCX
                     IY        = IY        + INCY
   70             CONTINUE
               END IF
               JX = JX + INCX
               JY = JY + INCY
   80       CONTINUE
         END IF
      END IF
*
      RETURN
*
*     End of SSYR2 .
*
      END
      SUBROUTINE SSYR2K( UPLO, TRANS, N, K, ALPHA, A, LDA, B, LDB,
     $                   BETA, C, LDC )
*     .. Scalar Arguments ..
      CHARACTER*1        UPLO, TRANS
      INTEGER            N, K, LDA, LDB, LDC
      REAL               ALPHA, BETA
*     .. Array Arguments ..
      REAL               A( LDA, * ), B( LDB, * ), C( LDC, * )
*     ..
*
*  Purpose
*  =======
*
*  SSYR2K  performs one of the symmetric rank 2k operations
*
*     C := alpha*A*B' + alpha*B*A' + beta*C,
*
*  or
*
*     C := alpha*A'*B + alpha*B'*A + beta*C,
*
*  where  alpha and beta  are scalars, C is an  n by n  symmetric matrix
*  and  A and B  are  n by k  matrices  in the  first  case  and  k by n
*  matrices in the second case.
*
*  Parameters
*  ==========
*
*  UPLO   - CHARACTER*1.
*           On  entry,   UPLO  specifies  whether  the  upper  or  lower
*           triangular  part  of the  array  C  is to be  referenced  as
*           follows:
*
*              UPLO = 'U' or 'u'   Only the  upper triangular part of  C
*                                  is to be referenced.
*
*              UPLO = 'L' or 'l'   Only the  lower triangular part of  C
*                                  is to be referenced.
*
*           Unchanged on exit.
*
*  TRANS  - CHARACTER*1.
*           On entry,  TRANS  specifies the operation to be performed as
*           follows:
*
*              TRANS = 'N' or 'n'   C := alpha*A*B' + alpha*B*A' +
*                                        beta*C.
*
*              TRANS = 'T' or 't'   C := alpha*A'*B + alpha*B'*A +
*                                        beta*C.
*
*              TRANS = 'C' or 'c'   C := alpha*A'*B + alpha*B'*A +
*                                        beta*C.
*
*           Unchanged on exit.
*
*  N      - INTEGER.
*           On entry,  N specifies the order of the matrix C.  N must be
*           at least zero.
*           Unchanged on exit.
*
*  K      - INTEGER.
*           On entry with  TRANS = 'N' or 'n',  K  specifies  the number
*           of  columns  of the  matrices  A and B,  and on  entry  with
*           TRANS = 'T' or 't' or 'C' or 'c',  K  specifies  the  number
*           of rows of the matrices  A and B.  K must be at least  zero.
*           Unchanged on exit.
*
*  ALPHA  - REAL            .
*           On entry, ALPHA specifies the scalar alpha.
*           Unchanged on exit.
*
*  A      - REAL             array of DIMENSION ( LDA, ka ), where ka is
*           k  when  TRANS = 'N' or 'n',  and is  n  otherwise.
*           Before entry with  TRANS = 'N' or 'n',  the  leading  n by k
*           part of the array  A  must contain the matrix  A,  otherwise
*           the leading  k by n  part of the array  A  must contain  the
*           matrix A.
*           Unchanged on exit.
*
*  LDA    - INTEGER.
*           On entry, LDA specifies the first dimension of A as declared
*           in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n'
*           then  LDA must be at least  max( 1, n ), otherwise  LDA must
*           be at least  max( 1, k ).
*           Unchanged on exit.
*
*  B      - REAL             array of DIMENSION ( LDB, kb ), where kb is
*           k  when  TRANS = 'N' or 'n',  and is  n  otherwise.
*           Before entry with  TRANS = 'N' or 'n',  the  leading  n by k
*           part of the array  B  must contain the matrix  B,  otherwise
*           the leading  k by n  part of the array  B  must contain  the
*           matrix B.
*           Unchanged on exit.
*
*  LDB    - INTEGER.
*           On entry, LDB specifies the first dimension of B as declared
*           in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n'
*           then  LDB must be at least  max( 1, n ), otherwise  LDB must
*           be at least  max( 1, k ).
*           Unchanged on exit.
*
*  BETA   - REAL            .
*           On entry, BETA specifies the scalar beta.
*           Unchanged on exit.
*
*  C      - REAL             array of DIMENSION ( LDC, n ).
*           Before entry  with  UPLO = 'U' or 'u',  the leading  n by n
*           upper triangular part of the array C must contain the upper
*           triangular part  of the  symmetric matrix  and the strictly
*           lower triangular part of C is not referenced.  On exit, the
*           upper triangular part of the array  C is overwritten by the
*           upper triangular part of the updated matrix.
*           Before entry  with  UPLO = 'L' or 'l',  the leading  n by n
*           lower triangular part of the array C must contain the lower
*           triangular part  of the  symmetric matrix  and the strictly
*           upper triangular part of C is not referenced.  On exit, the
*           lower triangular part of the array  C is overwritten by the
*           lower triangular part of the updated matrix.
*
*  LDC    - INTEGER.
*           On entry, LDC specifies the first dimension of C as declared
*           in  the  calling  (sub)  program.   LDC  must  be  at  least
*           max( 1, n ).
*           Unchanged on exit.
*
*
*  Level 3 Blas routine.
*
*
*  -- Written on 8-February-1989.
*     Jack Dongarra, Argonne National Laboratory.
*     Iain Duff, AERE Harwell.
*     Jeremy Du Croz, Numerical Algorithms Group Ltd.
*     Sven Hammarling, Numerical Algorithms Group Ltd.
*
*
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     .. Local Scalars ..
      LOGICAL            UPPER
      INTEGER            I, INFO, J, L, NROWA
      REAL               TEMP1, TEMP2
*     .. Parameters ..
      REAL               ONE         , ZERO
      PARAMETER        ( ONE = 1.0E+0, ZERO = 0.0E+0 )
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      IF( LSAME( TRANS, 'N' ) )THEN
         NROWA = N
      ELSE
         NROWA = K
      END IF
      UPPER = LSAME( UPLO, 'U' )
*
      INFO = 0
      IF(      ( .NOT.UPPER               ).AND.
     $         ( .NOT.LSAME( UPLO , 'L' ) )      )THEN
         INFO = 1
      ELSE IF( ( .NOT.LSAME( TRANS, 'N' ) ).AND.
     $         ( .NOT.LSAME( TRANS, 'T' ) ).AND.
     $         ( .NOT.LSAME( TRANS, 'C' ) )      )THEN
         INFO = 2
      ELSE IF( N  .LT.0               )THEN
         INFO = 3
      ELSE IF( K  .LT.0               )THEN
         INFO = 4
      ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN
         INFO = 7
      ELSE IF( LDB.LT.MAX( 1, NROWA ) )THEN
         INFO = 9
      ELSE IF( LDC.LT.MAX( 1, N     ) )THEN
         INFO = 12
      END IF
      IF( INFO.NE.0 )THEN
         CALL XERBLA( 'SSYR2K', INFO )
         RETURN
      END IF
*
*     Quick return if possible.
*
      IF( ( N.EQ.0 ).OR.
     $    ( ( ( ALPHA.EQ.ZERO ).OR.( K.EQ.0 ) ).AND.( BETA.EQ.ONE ) ) )
     $   RETURN
*
*     And when  alpha.eq.zero.
*
      IF( ALPHA.EQ.ZERO )THEN
         IF( UPPER )THEN
            IF( BETA.EQ.ZERO )THEN
               DO 20, J = 1, N
                  DO 10, I = 1, J
                     C( I, J ) = ZERO
   10             CONTINUE
   20          CONTINUE
            ELSE
               DO 40, J = 1, N
                  DO 30, I = 1, J
                     C( I, J ) = BETA*C( I, J )
   30             CONTINUE
   40          CONTINUE
            END IF
         ELSE
            IF( BETA.EQ.ZERO )THEN
               DO 60, J = 1, N
                  DO 50, I = J, N
                     C( I, J ) = ZERO
   50             CONTINUE
   60          CONTINUE
            ELSE
               DO 80, J = 1, N
                  DO 70, I = J, N
                     C( I, J ) = BETA*C( I, J )
   70             CONTINUE
   80          CONTINUE
            END IF
         END IF
         RETURN
      END IF
*
*     Start the operations.
*
      IF( LSAME( TRANS, 'N' ) )THEN
*
*        Form  C := alpha*A*B' + alpha*B*A' + C.
*
         IF( UPPER )THEN
            DO 130, J = 1, N
               IF( BETA.EQ.ZERO )THEN
                  DO 90, I = 1, J
                     C( I, J ) = ZERO
   90             CONTINUE
               ELSE IF( BETA.NE.ONE )THEN
                  DO 100, I = 1, J
                     C( I, J ) = BETA*C( I, J )
  100             CONTINUE
               END IF
               DO 120, L = 1, K
                  IF( ( A( J, L ).NE.ZERO ).OR.
     $                ( B( J, L ).NE.ZERO )     )THEN
                     TEMP1 = ALPHA*B( J, L )
                     TEMP2 = ALPHA*A( J, L )
                     DO 110, I = 1, J
                        C( I, J ) = C( I, J ) +
     $                              A( I, L )*TEMP1 + B( I, L )*TEMP2
  110                CONTINUE
                  END IF
  120          CONTINUE
  130       CONTINUE
         ELSE
            DO 180, J = 1, N
               IF( BETA.EQ.ZERO )THEN
                  DO 140, I = J, N
                     C( I, J ) = ZERO
  140             CONTINUE
               ELSE IF( BETA.NE.ONE )THEN
                  DO 150, I = J, N
                     C( I, J ) = BETA*C( I, J )
  150             CONTINUE
               END IF
               DO 170, L = 1, K
                  IF( ( A( J, L ).NE.ZERO ).OR.
     $                ( B( J, L ).NE.ZERO )     )THEN
                     TEMP1 = ALPHA*B( J, L )
                     TEMP2 = ALPHA*A( J, L )
                     DO 160, I = J, N
                        C( I, J ) = C( I, J ) +
     $                              A( I, L )*TEMP1 + B( I, L )*TEMP2
  160                CONTINUE
                  END IF
  170          CONTINUE
  180       CONTINUE
         END IF
      ELSE
*
*        Form  C := alpha*A'*B + alpha*B'*A + C.
*
         IF( UPPER )THEN
            DO 210, J = 1, N
               DO 200, I = 1, J
                  TEMP1 = ZERO
                  TEMP2 = ZERO
                  DO 190, L = 1, K
                     TEMP1 = TEMP1 + A( L, I )*B( L, J )
                     TEMP2 = TEMP2 + B( L, I )*A( L, J )
  190             CONTINUE
                  IF( BETA.EQ.ZERO )THEN
                     C( I, J ) = ALPHA*TEMP1 + ALPHA*TEMP2
                  ELSE
                     C( I, J ) = BETA *C( I, J ) +
     $                           ALPHA*TEMP1 + ALPHA*TEMP2
                  END IF
  200          CONTINUE
  210       CONTINUE
         ELSE
            DO 240, J = 1, N
               DO 230, I = J, N
                  TEMP1 = ZERO
                  TEMP2 = ZERO
                  DO 220, L = 1, K
                     TEMP1 = TEMP1 + A( L, I )*B( L, J )
                     TEMP2 = TEMP2 + B( L, I )*A( L, J )
  220             CONTINUE
                  IF( BETA.EQ.ZERO )THEN
                     C( I, J ) = ALPHA*TEMP1 + ALPHA*TEMP2
                  ELSE
                     C( I, J ) = BETA *C( I, J ) +
     $                           ALPHA*TEMP1 + ALPHA*TEMP2
                  END IF
  230          CONTINUE
  240       CONTINUE
         END IF
      END IF
*
      RETURN
*
*     End of SSYR2K.
*
      END
      SUBROUTINE SSYTD2( UPLO, N, A, LDA, D, E, TAU, INFO )
*
*  -- LAPACK routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     October 31, 1992
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            INFO, LDA, N
*     ..
*     .. Array Arguments ..
      REAL               A( LDA, * ), D( * ), E( * ), TAU( * )
*     ..
*
*  Purpose
*  =======
*
*  SSYTD2 reduces a real symmetric matrix A to symmetric tridiagonal
*  form T by an orthogonal similarity transformation: Q' * A * Q = T.
*
*  Arguments
*  =========
*
*  UPLO    (input) CHARACTER*1
*          Specifies whether the upper or lower triangular part of the
*          symmetric matrix A is stored:
*          = 'U':  Upper triangular
*          = 'L':  Lower triangular
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  A       (input/output) REAL array, dimension (LDA,N)
*          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
*          n-by-n upper triangular part of A contains the upper
*          triangular part of the matrix A, and the strictly lower
*          triangular part of A is not referenced.  If UPLO = 'L', the
*          leading n-by-n lower triangular part of A contains the lower
*          triangular part of the matrix A, and the strictly upper
*          triangular part of A is not referenced.
*          On exit, if UPLO = 'U', the diagonal and first superdiagonal
*          of A are overwritten by the corresponding elements of the
*          tridiagonal matrix T, and the elements above the first
*          superdiagonal, with the array TAU, represent the orthogonal
*          matrix Q as a product of elementary reflectors; if UPLO
*          = 'L', the diagonal and first subdiagonal of A are over-
*          written by the corresponding elements of the tridiagonal
*          matrix T, and the elements below the first subdiagonal, with
*          the array TAU, represent the orthogonal matrix Q as a product
*          of elementary reflectors. See Further Details.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N).
*
*  D       (output) REAL array, dimension (N)
*          The diagonal elements of the tridiagonal matrix T:
*          D(i) = A(i,i).
*
*  E       (output) REAL array, dimension (N-1)
*          The off-diagonal elements of the tridiagonal matrix T:
*          E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
*
*  TAU     (output) REAL array, dimension (N-1)
*          The scalar factors of the elementary reflectors (see Further
*          Details).
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value.
*
*  Further Details
*  ===============
*
*  If UPLO = 'U', the matrix Q is represented as a product of elementary
*  reflectors
*
*     Q = H(n-1) . . . H(2) H(1).
*
*  Each H(i) has the form
*
*     H(i) = I - tau * v * v'
*
*  where tau is a real scalar, and v is a real vector with
*  v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
*  A(1:i-1,i+1), and tau in TAU(i).
*
*  If UPLO = 'L', the matrix Q is represented as a product of elementary
*  reflectors
*
*     Q = H(1) H(2) . . . H(n-1).
*
*  Each H(i) has the form
*
*     H(i) = I - tau * v * v'
*
*  where tau is a real scalar, and v is a real vector with
*  v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
*  and tau in TAU(i).
*
*  The contents of A on exit are illustrated by the following examples
*  with n = 5:
*
*  if UPLO = 'U':                       if UPLO = 'L':
*
*    (  d   e   v2  v3  v4 )              (  d                  )
*    (      d   e   v3  v4 )              (  e   d              )
*    (          d   e   v4 )              (  v1  e   d          )
*    (              d   e  )              (  v1  v2  e   d      )
*    (                  d  )              (  v1  v2  v3  e   d  )
*
*  where d and e denote diagonal and off-diagonal elements of T, and vi
*  denotes an element of the vector defining H(i).
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE, ZERO, HALF
      PARAMETER          ( ONE = 1.0, ZERO = 0.0, HALF = 1.0 / 2.0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            UPPER
      INTEGER            I
      REAL               ALPHA, TAUI
*     ..
*     .. External Subroutines ..
      EXTERNAL           SAXPY, SLARFG, SSYMV, SSYR2, XERBLA
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      REAL               SDOT
      EXTERNAL           LSAME, SDOT
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters
*
      INFO = 0
      UPPER = LSAME( UPLO, 'U' )
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -4
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SSYTD2', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.LE.0 )
     $   RETURN
*
      IF( UPPER ) THEN
*
*        Reduce the upper triangle of A
*
         DO 10 I = N - 1, 1, -1
*
*           Generate elementary reflector H(i) = I - tau * v * v'
*           to annihilate A(1:i-1,i+1)
*
            CALL SLARFG( I, A( I, I+1 ), A( 1, I+1 ), 1, TAUI )
            E( I ) = A( I, I+1 )
*
            IF( TAUI.NE.ZERO ) THEN
*
*              Apply H(i) from both sides to A(1:i,1:i)
*
               A( I, I+1 ) = ONE
*
*              Compute  x := tau * A * v  storing x in TAU(1:i)
*
               CALL SSYMV( UPLO, I, TAUI, A, LDA, A( 1, I+1 ), 1, ZERO,
     $                     TAU, 1 )
*
*              Compute  w := x - 1/2 * tau * (x'*v) * v
*
               ALPHA = -HALF*TAUI*SDOT( I, TAU, 1, A( 1, I+1 ), 1 )
               CALL SAXPY( I, ALPHA, A( 1, I+1 ), 1, TAU, 1 )
*
*              Apply the transformation as a rank-2 update:
*                 A := A - v * w' - w * v'
*
               CALL SSYR2( UPLO, I, -ONE, A( 1, I+1 ), 1, TAU, 1, A,
     $                     LDA )
*
               A( I, I+1 ) = E( I )
            END IF
            D( I+1 ) = A( I+1, I+1 )
            TAU( I ) = TAUI
   10    CONTINUE
         D( 1 ) = A( 1, 1 )
      ELSE
*
*        Reduce the lower triangle of A
*
         DO 20 I = 1, N - 1
*
*           Generate elementary reflector H(i) = I - tau * v * v'
*           to annihilate A(i+2:n,i)
*
            CALL SLARFG( N-I, A( I+1, I ), A( MIN( I+2, N ), I ), 1,
     $                   TAUI )
            E( I ) = A( I+1, I )
*
            IF( TAUI.NE.ZERO ) THEN
*
*              Apply H(i) from both sides to A(i+1:n,i+1:n)
*
               A( I+1, I ) = ONE
*
*              Compute  x := tau * A * v  storing y in TAU(i:n-1)
*
               CALL SSYMV( UPLO, N-I, TAUI, A( I+1, I+1 ), LDA,
     $                     A( I+1, I ), 1, ZERO, TAU( I ), 1 )
*
*              Compute  w := x - 1/2 * tau * (x'*v) * v
*
               ALPHA = -HALF*TAUI*SDOT( N-I, TAU( I ), 1, A( I+1, I ),
     $                 1 )
               CALL SAXPY( N-I, ALPHA, A( I+1, I ), 1, TAU( I ), 1 )
*
*              Apply the transformation as a rank-2 update:
*                 A := A - v * w' - w * v'
*
               CALL SSYR2( UPLO, N-I, -ONE, A( I+1, I ), 1, TAU( I ), 1,
     $                     A( I+1, I+1 ), LDA )
*
               A( I+1, I ) = E( I )
            END IF
            D( I ) = A( I, I )
            TAU( I ) = TAUI
   20    CONTINUE
         D( N ) = A( N, N )
      END IF
*
      RETURN
*
*     End of SSYTD2
*
      END
      SUBROUTINE SSYTRD( UPLO, N, A, LDA, D, E, TAU, WORK, LWORK, INFO )
*
*  -- LAPACK routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            INFO, LDA, LWORK, N
*     ..
*     .. Array Arguments ..
      REAL               A( LDA, * ), D( * ), E( * ), TAU( * ),
     $                   WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  SSYTRD reduces a real symmetric matrix A to real symmetric
*  tridiagonal form T by an orthogonal similarity transformation:
*  Q**T * A * Q = T.
*
*  Arguments
*  =========
*
*  UPLO    (input) CHARACTER*1
*          = 'U':  Upper triangle of A is stored;
*          = 'L':  Lower triangle of A is stored.
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  A       (input/output) REAL array, dimension (LDA,N)
*          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
*          N-by-N upper triangular part of A contains the upper
*          triangular part of the matrix A, and the strictly lower
*          triangular part of A is not referenced.  If UPLO = 'L', the
*          leading N-by-N lower triangular part of A contains the lower
*          triangular part of the matrix A, and the strictly upper
*          triangular part of A is not referenced.
*          On exit, if UPLO = 'U', the diagonal and first superdiagonal
*          of A are overwritten by the corresponding elements of the
*          tridiagonal matrix T, and the elements above the first
*          superdiagonal, with the array TAU, represent the orthogonal
*          matrix Q as a product of elementary reflectors; if UPLO
*          = 'L', the diagonal and first subdiagonal of A are over-
*          written by the corresponding elements of the tridiagonal
*          matrix T, and the elements below the first subdiagonal, with
*          the array TAU, represent the orthogonal matrix Q as a product
*          of elementary reflectors. See Further Details.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N).
*
*  D       (output) REAL array, dimension (N)
*          The diagonal elements of the tridiagonal matrix T:
*          D(i) = A(i,i).
*
*  E       (output) REAL array, dimension (N-1)
*          The off-diagonal elements of the tridiagonal matrix T:
*          E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
*
*  TAU     (output) REAL array, dimension (N-1)
*          The scalar factors of the elementary reflectors (see Further
*          Details).
*
*  WORK    (workspace/output) REAL array, dimension (LWORK)
*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK.  LWORK >= 1.
*          For optimum performance LWORK >= N*NB, where NB is the
*          optimal blocksize.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*
*  Further Details
*  ===============
*
*  If UPLO = 'U', the matrix Q is represented as a product of elementary
*  reflectors
*
*     Q = H(n-1) . . . H(2) H(1).
*
*  Each H(i) has the form
*
*     H(i) = I - tau * v * v'
*
*  where tau is a real scalar, and v is a real vector with
*  v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
*  A(1:i-1,i+1), and tau in TAU(i).
*
*  If UPLO = 'L', the matrix Q is represented as a product of elementary
*  reflectors
*
*     Q = H(1) H(2) . . . H(n-1).
*
*  Each H(i) has the form
*
*     H(i) = I - tau * v * v'
*
*  where tau is a real scalar, and v is a real vector with
*  v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
*  and tau in TAU(i).
*
*  The contents of A on exit are illustrated by the following examples
*  with n = 5:
*
*  if UPLO = 'U':                       if UPLO = 'L':
*
*    (  d   e   v2  v3  v4 )              (  d                  )
*    (      d   e   v3  v4 )              (  e   d              )
*    (          d   e   v4 )              (  v1  e   d          )
*    (              d   e  )              (  v1  v2  e   d      )
*    (                  d  )              (  v1  v2  v3  e   d  )
*
*  where d and e denote diagonal and off-diagonal elements of T, and vi
*  denotes an element of the vector defining H(i).
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE
      PARAMETER          ( ONE = 1.0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            UPPER
      INTEGER            I, IINFO, IWS, J, KK, LDWORK, NB, NBMIN, NX
*     ..
*     .. External Subroutines ..
      EXTERNAL           SLATRD, SSYR2K, SSYTD2, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ILAENV
      EXTERNAL           LSAME, ILAENV
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters
*
      INFO = 0
      UPPER = LSAME( UPLO, 'U' )
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -4
      ELSE IF( LWORK.LT.1 ) THEN
         INFO = -9
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SSYTRD', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 ) THEN
         WORK( 1 ) = 1
         RETURN
      END IF
*
*     Determine the block size.
*
      NB = ILAENV( 1, 'SSYTRD', UPLO, N, -1, -1, -1 )
      NX = N
      IWS = 1
      IF( NB.GT.1 .AND. NB.LT.N ) THEN
*
*        Determine when to cross over from blocked to unblocked code
*        (last block is always handled by unblocked code).
*
         NX = MAX( NB, ILAENV( 3, 'SSYTRD', UPLO, N, -1, -1, -1 ) )
         IF( NX.LT.N ) THEN
*
*           Determine if workspace is large enough for blocked code.
*
            LDWORK = N
            IWS = LDWORK*NB
            IF( LWORK.LT.IWS ) THEN
*
*              Not enough workspace to use optimal NB:  determine the
*              minimum value of NB, and reduce NB or force use of
*              unblocked code by setting NX = N.
*
               NB = MAX( LWORK / LDWORK, 1 )
               NBMIN = ILAENV( 2, 'SSYTRD', UPLO, N, -1, -1, -1 )
               IF( NB.LT.NBMIN )
     $            NX = N
            END IF
         ELSE
            NX = N
         END IF
      ELSE
         NB = 1
      END IF
*
      IF( UPPER ) THEN
*
*        Reduce the upper triangle of A.
*        Columns 1:kk are handled by the unblocked method.
*
         KK = N - ( ( N-NX+NB-1 ) / NB )*NB
         DO 20 I = N - NB + 1, KK + 1, -NB
*
*           Reduce columns i:i+nb-1 to tridiagonal form and form the
*           matrix W which is needed to update the unreduced part of
*           the matrix
*
            CALL SLATRD( UPLO, I+NB-1, NB, A, LDA, E, TAU, WORK,
     $                   LDWORK )
*
*           Update the unreduced submatrix A(1:i-1,1:i-1), using an
*           update of the form:  A := A - V*W' - W*V'
*
            CALL SSYR2K( UPLO, 'No transpose', I-1, NB, -ONE, A( 1, I ),
     $                   LDA, WORK, LDWORK, ONE, A, LDA )
*
*           Copy superdiagonal elements back into A, and diagonal
*           elements into D
*
            DO 10 J = I, I + NB - 1
               A( J-1, J ) = E( J-1 )
               D( J ) = A( J, J )
   10       CONTINUE
   20    CONTINUE
*
*        Use unblocked code to reduce the last or only block
*
         CALL SSYTD2( UPLO, KK, A, LDA, D, E, TAU, IINFO )
      ELSE
*
*        Reduce the lower triangle of A
*
         DO 40 I = 1, N - NX, NB
*
*           Reduce columns i:i+nb-1 to tridiagonal form and form the
*           matrix W which is needed to update the unreduced part of
*           the matrix
*
            CALL SLATRD( UPLO, N-I+1, NB, A( I, I ), LDA, E( I ),
     $                   TAU( I ), WORK, LDWORK )
*
*           Update the unreduced submatrix A(i+ib:n,i+ib:n), using
*           an update of the form:  A := A - V*W' - W*V'
*
            CALL SSYR2K( UPLO, 'No transpose', N-I-NB+1, NB, -ONE,
     $                   A( I+NB, I ), LDA, WORK( NB+1 ), LDWORK, ONE,
     $                   A( I+NB, I+NB ), LDA )
*
*           Copy subdiagonal elements back into A, and diagonal
*           elements into D
*
            DO 30 J = I, I + NB - 1
               A( J+1, J ) = E( J )
               D( J ) = A( J, J )
   30       CONTINUE
   40    CONTINUE
*
*        Use unblocked code to reduce the last or only block
*
         CALL SSYTD2( UPLO, N-I+1, A( I, I ), LDA, D( I ), E( I ),
     $                TAU( I ), IINFO )
      END IF
*
      WORK( 1 ) = IWS
      RETURN
*
*     End of SSYTRD
*
      END
      SUBROUTINE STRMM ( SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA,
     $                   B, LDB )
*     .. Scalar Arguments ..
      CHARACTER*1        SIDE, UPLO, TRANSA, DIAG
      INTEGER            M, N, LDA, LDB
      REAL               ALPHA
*     .. Array Arguments ..
      REAL               A( LDA, * ), B( LDB, * )
*     ..
*
*  Purpose
*  =======
*
*  STRMM  performs one of the matrix-matrix operations
*
*     B := alpha*op( A )*B,   or   B := alpha*B*op( A ),
*
*  where  alpha  is a scalar,  B  is an m by n matrix,  A  is a unit, or
*  non-unit,  upper or lower triangular matrix  and  op( A )  is one  of
*
*     op( A ) = A   or   op( A ) = A'.
*
*  Parameters
*  ==========
*
*  SIDE   - CHARACTER*1.
*           On entry,  SIDE specifies whether  op( A ) multiplies B from
*           the left or right as follows:
*
*              SIDE = 'L' or 'l'   B := alpha*op( A )*B.
*
*              SIDE = 'R' or 'r'   B := alpha*B*op( A ).
*
*           Unchanged on exit.
*
*  UPLO   - CHARACTER*1.
*           On entry, UPLO specifies whether the matrix A is an upper or
*           lower triangular matrix as follows:
*
*              UPLO = 'U' or 'u'   A is an upper triangular matrix.
*
*              UPLO = 'L' or 'l'   A is a lower triangular matrix.
*
*           Unchanged on exit.
*
*  TRANSA - CHARACTER*1.
*           On entry, TRANSA specifies the form of op( A ) to be used in
*           the matrix multiplication as follows:
*
*              TRANSA = 'N' or 'n'   op( A ) = A.
*
*              TRANSA = 'T' or 't'   op( A ) = A'.
*
*              TRANSA = 'C' or 'c'   op( A ) = A'.
*
*           Unchanged on exit.
*
*  DIAG   - CHARACTER*1.
*           On entry, DIAG specifies whether or not A is unit triangular
*           as follows:
*
*              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
*
*              DIAG = 'N' or 'n'   A is not assumed to be unit
*                                  triangular.
*
*           Unchanged on exit.
*
*  M      - INTEGER.
*           On entry, M specifies the number of rows of B. M must be at
*           least zero.
*           Unchanged on exit.
*
*  N      - INTEGER.
*           On entry, N specifies the number of columns of B.  N must be
*           at least zero.
*           Unchanged on exit.
*
*  ALPHA  - REAL            .
*           On entry,  ALPHA specifies the scalar  alpha. When  alpha is
*           zero then  A is not referenced and  B need not be set before
*           entry.
*           Unchanged on exit.
*
*  A      - REAL             array of DIMENSION ( LDA, k ), where k is m
*           when  SIDE = 'L' or 'l'  and is  n  when  SIDE = 'R' or 'r'.
*           Before entry  with  UPLO = 'U' or 'u',  the  leading  k by k
*           upper triangular part of the array  A must contain the upper
*           triangular matrix  and the strictly lower triangular part of
*           A is not referenced.
*           Before entry  with  UPLO = 'L' or 'l',  the  leading  k by k
*           lower triangular part of the array  A must contain the lower
*           triangular matrix  and the strictly upper triangular part of
*           A is not referenced.
*           Note that when  DIAG = 'U' or 'u',  the diagonal elements of
*           A  are not referenced either,  but are assumed to be  unity.
*           Unchanged on exit.
*
*  LDA    - INTEGER.
*           On entry, LDA specifies the first dimension of A as declared
*           in the calling (sub) program.  When  SIDE = 'L' or 'l'  then
*           LDA  must be at least  max( 1, m ),  when  SIDE = 'R' or 'r'
*           then LDA must be at least max( 1, n ).
*           Unchanged on exit.
*
*  B      - REAL             array of DIMENSION ( LDB, n ).
*           Before entry,  the leading  m by n part of the array  B must
*           contain the matrix  B,  and  on exit  is overwritten  by the
*           transformed matrix.
*
*  LDB    - INTEGER.
*           On entry, LDB specifies the first dimension of B as declared
*           in  the  calling  (sub)  program.   LDB  must  be  at  least
*           max( 1, m ).
*           Unchanged on exit.
*
*
*  Level 3 Blas routine.
*
*  -- Written on 8-February-1989.
*     Jack Dongarra, Argonne National Laboratory.
*     Iain Duff, AERE Harwell.
*     Jeremy Du Croz, Numerical Algorithms Group Ltd.
*     Sven Hammarling, Numerical Algorithms Group Ltd.
*
*
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     .. Local Scalars ..
      LOGICAL            LSIDE, NOUNIT, UPPER
      INTEGER            I, INFO, J, K, NROWA
      REAL               TEMP
*     .. Parameters ..
      REAL               ONE         , ZERO
      PARAMETER        ( ONE = 1.0E+0, ZERO = 0.0E+0 )
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      LSIDE  = LSAME( SIDE  , 'L' )
      IF( LSIDE )THEN
         NROWA = M
      ELSE
         NROWA = N
      END IF
      NOUNIT = LSAME( DIAG  , 'N' )
      UPPER  = LSAME( UPLO  , 'U' )
*
      INFO   = 0
      IF(      ( .NOT.LSIDE                ).AND.
     $         ( .NOT.LSAME( SIDE  , 'R' ) )      )THEN
         INFO = 1
      ELSE IF( ( .NOT.UPPER                ).AND.
     $         ( .NOT.LSAME( UPLO  , 'L' ) )      )THEN
         INFO = 2
      ELSE IF( ( .NOT.LSAME( TRANSA, 'N' ) ).AND.
     $         ( .NOT.LSAME( TRANSA, 'T' ) ).AND.
     $         ( .NOT.LSAME( TRANSA, 'C' ) )      )THEN
         INFO = 3
      ELSE IF( ( .NOT.LSAME( DIAG  , 'U' ) ).AND.
     $         ( .NOT.LSAME( DIAG  , 'N' ) )      )THEN
         INFO = 4
      ELSE IF( M  .LT.0               )THEN
         INFO = 5
      ELSE IF( N  .LT.0               )THEN
         INFO = 6
      ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN
         INFO = 9
      ELSE IF( LDB.LT.MAX( 1, M     ) )THEN
         INFO = 11
      END IF
      IF( INFO.NE.0 )THEN
         CALL XERBLA( 'STRMM ', INFO )
         RETURN
      END IF
*
*     Quick return if possible.
*
      IF( N.EQ.0 )
     $   RETURN
*
*     And when  alpha.eq.zero.
*
      IF( ALPHA.EQ.ZERO )THEN
         DO 20, J = 1, N
            DO 10, I = 1, M
               B( I, J ) = ZERO
   10       CONTINUE
   20    CONTINUE
         RETURN
      END IF
*
*     Start the operations.
*
      IF( LSIDE )THEN
         IF( LSAME( TRANSA, 'N' ) )THEN
*
*           Form  B := alpha*A*B.
*
            IF( UPPER )THEN
               DO 50, J = 1, N
                  DO 40, K = 1, M
                     IF( B( K, J ).NE.ZERO )THEN
                        TEMP = ALPHA*B( K, J )
                        DO 30, I = 1, K - 1
                           B( I, J ) = B( I, J ) + TEMP*A( I, K )
   30                   CONTINUE
                        IF( NOUNIT )
     $                     TEMP = TEMP*A( K, K )
                        B( K, J ) = TEMP
                     END IF
   40             CONTINUE
   50          CONTINUE
            ELSE
               DO 80, J = 1, N
                  DO 70 K = M, 1, -1
                     IF( B( K, J ).NE.ZERO )THEN
                        TEMP      = ALPHA*B( K, J )
                        B( K, J ) = TEMP
                        IF( NOUNIT )
     $                     B( K, J ) = B( K, J )*A( K, K )
                        DO 60, I = K + 1, M
                           B( I, J ) = B( I, J ) + TEMP*A( I, K )
   60                   CONTINUE
                     END IF
   70             CONTINUE
   80          CONTINUE
            END IF
         ELSE
*
*           Form  B := alpha*B*A'.
*
            IF( UPPER )THEN
               DO 110, J = 1, N
                  DO 100, I = M, 1, -1
                     TEMP = B( I, J )
                     IF( NOUNIT )
     $                  TEMP = TEMP*A( I, I )
                     DO 90, K = 1, I - 1
                        TEMP = TEMP + A( K, I )*B( K, J )
   90                CONTINUE
                     B( I, J ) = ALPHA*TEMP
  100             CONTINUE
  110          CONTINUE
            ELSE
               DO 140, J = 1, N
                  DO 130, I = 1, M
                     TEMP = B( I, J )
                     IF( NOUNIT )
     $                  TEMP = TEMP*A( I, I )
                     DO 120, K = I + 1, M
                        TEMP = TEMP + A( K, I )*B( K, J )
  120                CONTINUE
                     B( I, J ) = ALPHA*TEMP
  130             CONTINUE
  140          CONTINUE
            END IF
         END IF
      ELSE
         IF( LSAME( TRANSA, 'N' ) )THEN
*
*           Form  B := alpha*B*A.
*
            IF( UPPER )THEN
               DO 180, J = N, 1, -1
                  TEMP = ALPHA
                  IF( NOUNIT )
     $               TEMP = TEMP*A( J, J )
                  DO 150, I = 1, M
                     B( I, J ) = TEMP*B( I, J )
  150             CONTINUE
                  DO 170, K = 1, J - 1
                     IF( A( K, J ).NE.ZERO )THEN
                        TEMP = ALPHA*A( K, J )
                        DO 160, I = 1, M
                           B( I, J ) = B( I, J ) + TEMP*B( I, K )
  160                   CONTINUE
                     END IF
  170             CONTINUE
  180          CONTINUE
            ELSE
               DO 220, J = 1, N
                  TEMP = ALPHA
                  IF( NOUNIT )
     $               TEMP = TEMP*A( J, J )
                  DO 190, I = 1, M
                     B( I, J ) = TEMP*B( I, J )
  190             CONTINUE
                  DO 210, K = J + 1, N
                     IF( A( K, J ).NE.ZERO )THEN
                        TEMP = ALPHA*A( K, J )
                        DO 200, I = 1, M
                           B( I, J ) = B( I, J ) + TEMP*B( I, K )
  200                   CONTINUE
                     END IF
  210             CONTINUE
  220          CONTINUE
            END IF
         ELSE
*
*           Form  B := alpha*B*A'.
*
            IF( UPPER )THEN
               DO 260, K = 1, N
                  DO 240, J = 1, K - 1
                     IF( A( J, K ).NE.ZERO )THEN
                        TEMP = ALPHA*A( J, K )
                        DO 230, I = 1, M
                           B( I, J ) = B( I, J ) + TEMP*B( I, K )
  230                   CONTINUE
                     END IF
  240             CONTINUE
                  TEMP = ALPHA
                  IF( NOUNIT )
     $               TEMP = TEMP*A( K, K )
                  IF( TEMP.NE.ONE )THEN
                     DO 250, I = 1, M
                        B( I, K ) = TEMP*B( I, K )
  250                CONTINUE
                  END IF
  260          CONTINUE
            ELSE
               DO 300, K = N, 1, -1
                  DO 280, J = K + 1, N
                     IF( A( J, K ).NE.ZERO )THEN
                        TEMP = ALPHA*A( J, K )
                        DO 270, I = 1, M
                           B( I, J ) = B( I, J ) + TEMP*B( I, K )
  270                   CONTINUE
                     END IF
  280             CONTINUE
                  TEMP = ALPHA
                  IF( NOUNIT )
     $               TEMP = TEMP*A( K, K )
                  IF( TEMP.NE.ONE )THEN
                     DO 290, I = 1, M
                        B( I, K ) = TEMP*B( I, K )
  290                CONTINUE
                  END IF
  300          CONTINUE
            END IF
         END IF
      END IF
*
      RETURN
*
*     End of STRMM .
*
      END
      SUBROUTINE STRMV ( UPLO, TRANS, DIAG, N, A, LDA, X, INCX )
*     .. Scalar Arguments ..
      INTEGER            INCX, LDA, N
      CHARACTER*1        DIAG, TRANS, UPLO
*     .. Array Arguments ..
      REAL               A( LDA, * ), X( * )
*     ..
*
*  Purpose
*  =======
*
*  STRMV  performs one of the matrix-vector operations
*
*     x := A*x,   or   x := A'*x,
*
*  where x is an n element vector and  A is an n by n unit, or non-unit,
*  upper or lower triangular matrix.
*
*  Parameters
*  ==========
*
*  UPLO   - CHARACTER*1.
*           On entry, UPLO specifies whether the matrix is an upper or
*           lower triangular matrix as follows:
*
*              UPLO = 'U' or 'u'   A is an upper triangular matrix.
*
*              UPLO = 'L' or 'l'   A is a lower triangular matrix.
*
*           Unchanged on exit.
*
*  TRANS  - CHARACTER*1.
*           On entry, TRANS specifies the operation to be performed as
*           follows:
*
*              TRANS = 'N' or 'n'   x := A*x.
*
*              TRANS = 'T' or 't'   x := A'*x.
*
*              TRANS = 'C' or 'c'   x := A'*x.
*
*           Unchanged on exit.
*
*  DIAG   - CHARACTER*1.
*           On entry, DIAG specifies whether or not A is unit
*           triangular as follows:
*
*              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
*
*              DIAG = 'N' or 'n'   A is not assumed to be unit
*                                  triangular.
*
*           Unchanged on exit.
*
*  N      - INTEGER.
*           On entry, N specifies the order of the matrix A.
*           N must be at least zero.
*           Unchanged on exit.
*
*  A      - REAL             array of DIMENSION ( LDA, n ).
*           Before entry with  UPLO = 'U' or 'u', the leading n by n
*           upper triangular part of the array A must contain the upper
*           triangular matrix and the strictly lower triangular part of
*           A is not referenced.
*           Before entry with UPLO = 'L' or 'l', the leading n by n
*           lower triangular part of the array A must contain the lower
*           triangular matrix and the strictly upper triangular part of
*           A is not referenced.
*           Note that when  DIAG = 'U' or 'u', the diagonal elements of
*           A are not referenced either, but are assumed to be unity.
*           Unchanged on exit.
*
*  LDA    - INTEGER.
*           On entry, LDA specifies the first dimension of A as declared
*           in the calling (sub) program. LDA must be at least
*           max( 1, n ).
*           Unchanged on exit.
*
*  X      - REAL             array of dimension at least
*           ( 1 + ( n - 1 )*abs( INCX ) ).
*           Before entry, the incremented array X must contain the n
*           element vector x. On exit, X is overwritten with the
*           tranformed vector x.
*
*  INCX   - INTEGER.
*           On entry, INCX specifies the increment for the elements of
*           X. INCX must not be zero.
*           Unchanged on exit.
*
*
*  Level 2 Blas routine.
*
*  -- Written on 22-October-1986.
*     Jack Dongarra, Argonne National Lab.
*     Jeremy Du Croz, Nag Central Office.
*     Sven Hammarling, Nag Central Office.
*     Richard Hanson, Sandia National Labs.
*
*
*     .. Parameters ..
      REAL               ZERO
      PARAMETER        ( ZERO = 0.0E+0 )
*     .. Local Scalars ..
      REAL               TEMP
      INTEGER            I, INFO, IX, J, JX, KX
      LOGICAL            NOUNIT
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      IF     ( .NOT.LSAME( UPLO , 'U' ).AND.
     $         .NOT.LSAME( UPLO , 'L' )      )THEN
         INFO = 1
      ELSE IF( .NOT.LSAME( TRANS, 'N' ).AND.
     $         .NOT.LSAME( TRANS, 'T' ).AND.
     $         .NOT.LSAME( TRANS, 'C' )      )THEN
         INFO = 2
      ELSE IF( .NOT.LSAME( DIAG , 'U' ).AND.
     $         .NOT.LSAME( DIAG , 'N' )      )THEN
         INFO = 3
      ELSE IF( N.LT.0 )THEN
         INFO = 4
      ELSE IF( LDA.LT.MAX( 1, N ) )THEN
         INFO = 6
      ELSE IF( INCX.EQ.0 )THEN
         INFO = 8
      END IF
      IF( INFO.NE.0 )THEN
         CALL XERBLA( 'STRMV ', INFO )
         RETURN
      END IF
*
*     Quick return if possible.
*
      IF( N.EQ.0 )
     $   RETURN
*
      NOUNIT = LSAME( DIAG, 'N' )
*
*     Set up the start point in X if the increment is not unity. This
*     will be  ( N - 1 )*INCX  too small for descending loops.
*
      IF( INCX.LE.0 )THEN
         KX = 1 - ( N - 1 )*INCX
      ELSE IF( INCX.NE.1 )THEN
         KX = 1
      END IF
*
*     Start the operations. In this version the elements of A are
*     accessed sequentially with one pass through A.
*
      IF( LSAME( TRANS, 'N' ) )THEN
*
*        Form  x := A*x.
*
         IF( LSAME( UPLO, 'U' ) )THEN
            IF( INCX.EQ.1 )THEN
               DO 20, J = 1, N
                  IF( X( J ).NE.ZERO )THEN
                     TEMP = X( J )
                     DO 10, I = 1, J - 1
                        X( I ) = X( I ) + TEMP*A( I, J )
   10                CONTINUE
                     IF( NOUNIT )
     $                  X( J ) = X( J )*A( J, J )
                  END IF
   20          CONTINUE
            ELSE
               JX = KX
               DO 40, J = 1, N
                  IF( X( JX ).NE.ZERO )THEN
                     TEMP = X( JX )
                     IX   = KX
                     DO 30, I = 1, J - 1
                        X( IX ) = X( IX ) + TEMP*A( I, J )
                        IX      = IX      + INCX
   30                CONTINUE
                     IF( NOUNIT )
     $                  X( JX ) = X( JX )*A( J, J )
                  END IF
                  JX = JX + INCX
   40          CONTINUE
            END IF
         ELSE
            IF( INCX.EQ.1 )THEN
               DO 60, J = N, 1, -1
                  IF( X( J ).NE.ZERO )THEN
                     TEMP = X( J )
                     DO 50, I = N, J + 1, -1
                        X( I ) = X( I ) + TEMP*A( I, J )
   50                CONTINUE
                     IF( NOUNIT )
     $                  X( J ) = X( J )*A( J, J )
                  END IF
   60          CONTINUE
            ELSE
               KX = KX + ( N - 1 )*INCX
               JX = KX
               DO 80, J = N, 1, -1
                  IF( X( JX ).NE.ZERO )THEN
                     TEMP = X( JX )
                     IX   = KX
                     DO 70, I = N, J + 1, -1
                        X( IX ) = X( IX ) + TEMP*A( I, J )
                        IX      = IX      - INCX
   70                CONTINUE
                     IF( NOUNIT )
     $                  X( JX ) = X( JX )*A( J, J )
                  END IF
                  JX = JX - INCX
   80          CONTINUE
            END IF
         END IF
      ELSE
*
*        Form  x := A'*x.
*
         IF( LSAME( UPLO, 'U' ) )THEN
            IF( INCX.EQ.1 )THEN
               DO 100, J = N, 1, -1
                  TEMP = X( J )
                  IF( NOUNIT )
     $               TEMP = TEMP*A( J, J )
                  DO 90, I = J - 1, 1, -1
                     TEMP = TEMP + A( I, J )*X( I )
   90             CONTINUE
                  X( J ) = TEMP
  100          CONTINUE
            ELSE
               JX = KX + ( N - 1 )*INCX
               DO 120, J = N, 1, -1
                  TEMP = X( JX )
                  IX   = JX
                  IF( NOUNIT )
     $               TEMP = TEMP*A( J, J )
                  DO 110, I = J - 1, 1, -1
                     IX   = IX   - INCX
                     TEMP = TEMP + A( I, J )*X( IX )
  110             CONTINUE
                  X( JX ) = TEMP
                  JX      = JX   - INCX
  120          CONTINUE
            END IF
         ELSE
            IF( INCX.EQ.1 )THEN
               DO 140, J = 1, N
                  TEMP = X( J )
                  IF( NOUNIT )
     $               TEMP = TEMP*A( J, J )
                  DO 130, I = J + 1, N
                     TEMP = TEMP + A( I, J )*X( I )
  130             CONTINUE
                  X( J ) = TEMP
  140          CONTINUE
            ELSE
               JX = KX
               DO 160, J = 1, N
                  TEMP = X( JX )
                  IX   = JX
                  IF( NOUNIT )
     $               TEMP = TEMP*A( J, J )
                  DO 150, I = J + 1, N
                     IX   = IX   + INCX
                     TEMP = TEMP + A( I, J )*X( IX )
  150             CONTINUE
                  X( JX ) = TEMP
                  JX      = JX   + INCX
  160          CONTINUE
            END IF
         END IF
      END IF
*
      RETURN
*
*     End of STRMV .
*
      END
      SUBROUTINE XERBLA( SRNAME, INFO )
*
*  -- LAPACK auxiliary routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      CHARACTER*6        SRNAME
      INTEGER            INFO
*     ..
*
*  Purpose
*  =======
*
*  XERBLA  is an error handler for the LAPACK routines.
*  It is called by an LAPACK routine if an input parameter has an
*  invalid value.  A message is printed and execution stops.
*
*  Installers may consider modifying the STOP statement in order to
*  call system-specific exception-handling facilities.
*
*  Arguments
*  =========
*
*  SRNAME  (input) CHARACTER*6
*          The name of the routine which called XERBLA.
*
*  INFO    (input) INTEGER
*          The position of the invalid parameter in the parameter list
*          of the calling routine.
*
* =====================================================================
*
*     .. Executable Statements ..
*
      WRITE( *, FMT = 9999 )SRNAME, INFO
*
      STOP
*
 9999 FORMAT( ' ** On entry to ', A6, ' parameter number ', I2, ' had ',
     $      'an illegal value' )
*
*     End of XERBLA
*
      END

^ permalink raw reply	[flat|nested] 7+ messages in thread

* Re: HIRLAM and -ftree-loop-linear
  2007-12-17 21:24   ` Toon Moene
@ 2007-12-17 22:45     ` Toon Moene
  0 siblings, 0 replies; 7+ messages in thread
From: Toon Moene @ 2007-12-17 22:45 UTC (permalink / raw)
  To: Dorit Nuzman; +Cc: gcc mailing list, Sebastian Pop

[-- Attachment #1: Type: text/plain, Size: 740 bytes --]

I wrote:

> Dorit Nuzman wrote:
> 
>> any chance you kept the dumps and can report which loops were not
>> vectorized/recognized with -ftree-loop-linear (so we could see if these
>> represent missed vectorization opportunities?)
> 
> It's a bit much to send you everything, so I'll just send you the diff + 
> two routines (from blas/lapack) that had differences (one positive, one 
> negative).

Sigh, dgeev.f is the positive one (i.e., -ftree-loop-linear vectorized 
more loops - attached).

-- 
Toon Moene - e-mail: toon@moene.indiv.nluug.nl - phone: +31 346 214290
Saturnushof 14, 3738 XG  Maartensdijk, The Netherlands
At home: http://moene.indiv.nluug.nl/~toon/
GNU Fortran's path to Fortran 2003: http://gcc.gnu.org/wiki/Fortran2003

[-- Attachment #2: dgeev.f --]
[-- Type: text/plain, Size: 215139 bytes --]







      SUBROUTINE DGEEV( JOBVL, JOBVR, N, A, LDA, WR, WI, VL, LDVL, VR,
     $                  LDVR, WORK, LWORK, INFO )
*
*  -- LAPACK driver routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     December 8, 1999
*
*     .. Scalar Arguments ..
      CHARACTER          JOBVL, JOBVR
      INTEGER            INFO, LDA, LDVL, LDVR, LWORK, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ),
     $                   WI( * ), WORK( * ), WR( * )
*     ..
*
*  Purpose
*  =======
*
*  DGEEV computes for an N-by-N real nonsymmetric matrix A, the
*  eigenvalues and, optionally, the left and/or right eigenvectors.
*
*  The right eigenvector v(j) of A satisfies
*                   A * v(j) = lambda(j) * v(j)
*  where lambda(j) is its eigenvalue.
*  The left eigenvector u(j) of A satisfies
*                u(j)**H * A = lambda(j) * u(j)**H
*  where u(j)**H denotes the conjugate transpose of u(j).
*
*  The computed eigenvectors are normalized to have Euclidean norm
*  equal to 1 and largest component real.
*
*  Arguments
*  =========
*
*  JOBVL   (input) CHARACTER*1
*          = 'N': left eigenvectors of A are not computed;
*          = 'V': left eigenvectors of A are computed.
*
*  JOBVR   (input) CHARACTER*1
*          = 'N': right eigenvectors of A are not computed;
*          = 'V': right eigenvectors of A are computed.
*
*  N       (input) INTEGER
*          The order of the matrix A. N >= 0.
*
*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
*          On entry, the N-by-N matrix A.
*          On exit, A has been overwritten.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N).
*
*  WR      (output) DOUBLE PRECISION array, dimension (N)
*  WI      (output) DOUBLE PRECISION array, dimension (N)
*          WR and WI contain the real and imaginary parts,
*          respectively, of the computed eigenvalues.  Complex
*          conjugate pairs of eigenvalues appear consecutively
*          with the eigenvalue having the positive imaginary part
*          first.
*
*  VL      (output) DOUBLE PRECISION array, dimension (LDVL,N)
*          If JOBVL = 'V', the left eigenvectors u(j) are stored one
*          after another in the columns of VL, in the same order
*          as their eigenvalues.
*          If JOBVL = 'N', VL is not referenced.
*          If the j-th eigenvalue is real, then u(j) = VL(:,j),
*          the j-th column of VL.
*          If the j-th and (j+1)-st eigenvalues form a complex
*          conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and
*          u(j+1) = VL(:,j) - i*VL(:,j+1).
*
*  LDVL    (input) INTEGER
*          The leading dimension of the array VL.  LDVL >= 1; if
*          JOBVL = 'V', LDVL >= N.
*
*  VR      (output) DOUBLE PRECISION array, dimension (LDVR,N)
*          If JOBVR = 'V', the right eigenvectors v(j) are stored one
*          after another in the columns of VR, in the same order
*          as their eigenvalues.
*          If JOBVR = 'N', VR is not referenced.
*          If the j-th eigenvalue is real, then v(j) = VR(:,j),
*          the j-th column of VR.
*          If the j-th and (j+1)-st eigenvalues form a complex
*          conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and
*          v(j+1) = VR(:,j) - i*VR(:,j+1).
*
*  LDVR    (input) INTEGER
*          The leading dimension of the array VR.  LDVR >= 1; if
*          JOBVR = 'V', LDVR >= N.
*
*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK.  LWORK >= max(1,3*N), and
*          if JOBVL = 'V' or JOBVR = 'V', LWORK >= 4*N.  For good
*          performance, LWORK must generally be larger.
*
*          If LWORK = -1, then a workspace query is assumed; the routine
*          only calculates the optimal size of the WORK array, returns
*          this value as the first entry of the WORK array, and no error
*          message related to LWORK is issued by XERBLA.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value.
*          > 0:  if INFO = i, the QR algorithm failed to compute all the
*                eigenvalues, and no eigenvectors have been computed;
*                elements i+1:N of WR and WI contain eigenvalues which
*                have converged.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            LQUERY, SCALEA, WANTVL, WANTVR
      CHARACTER          SIDE
      INTEGER            HSWORK, I, IBAL, IERR, IHI, ILO, ITAU, IWRK, K,
     $                   MAXB, MAXWRK, MINWRK, NOUT
      DOUBLE PRECISION   ANRM, BIGNUM, CS, CSCALE, EPS, R, SCL, SMLNUM,
     $                   SN
*     ..
*     .. Local Arrays ..
      LOGICAL            SELECT( 1 )
      DOUBLE PRECISION   DUM( 1 )
*     ..
*     .. External Subroutines ..
      EXTERNAL           DGEBAK, DGEBAL, DGEHRD, DHSEQR, DLACPY, DLARTG,
     $                   DLASCL, DORGHR, DROT, DSCAL, DTREVC, XERBLA
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            IDAMAX, ILAENV
      DOUBLE PRECISION   DLAMCH, DLANGE, DLAPY2, DNRM2
      EXTERNAL           LSAME, IDAMAX, ILAENV, DLAMCH, DLANGE, DLAPY2,
     $                   DNRM2
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN, SQRT
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments
*
      INFO = 0
      LQUERY = ( LWORK.EQ.-1 )
      WANTVL = LSAME( JOBVL, 'V' )
      WANTVR = LSAME( JOBVR, 'V' )
      IF( ( .NOT.WANTVL ) .AND. ( .NOT.LSAME( JOBVL, 'N' ) ) ) THEN
         INFO = -1
      ELSE IF( ( .NOT.WANTVR ) .AND. ( .NOT.LSAME( JOBVR, 'N' ) ) ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -5
      ELSE IF( LDVL.LT.1 .OR. ( WANTVL .AND. LDVL.LT.N ) ) THEN
         INFO = -9
      ELSE IF( LDVR.LT.1 .OR. ( WANTVR .AND. LDVR.LT.N ) ) THEN
         INFO = -11
      END IF
*
*     Compute workspace
*      (Note: Comments in the code beginning "Workspace:" describe the
*       minimal amount of workspace needed at that point in the code,
*       as well as the preferred amount for good performance.
*       NB refers to the optimal block size for the immediately
*       following subroutine, as returned by ILAENV.
*       HSWORK refers to the workspace preferred by DHSEQR, as
*       calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
*       the worst case.)
*
      MINWRK = 1
      IF( INFO.EQ.0 .AND. ( LWORK.GE.1 .OR. LQUERY ) ) THEN
         MAXWRK = 2*N + N*ILAENV( 1, 'DGEHRD', ' ', N, 1, N, 0 )
         IF( ( .NOT.WANTVL ) .AND. ( .NOT.WANTVR ) ) THEN
            MINWRK = MAX( 1, 3*N )
            MAXB = MAX( ILAENV( 8, 'DHSEQR', 'EN', N, 1, N, -1 ), 2 )
            K = MIN( MAXB, N, MAX( 2, ILAENV( 4, 'DHSEQR', 'EN', N, 1,
     $          N, -1 ) ) )
            HSWORK = MAX( K*( K+2 ), 2*N )
            MAXWRK = MAX( MAXWRK, N+1, N+HSWORK )
         ELSE
            MINWRK = MAX( 1, 4*N )
            MAXWRK = MAX( MAXWRK, 2*N+( N-1 )*
     $               ILAENV( 1, 'DORGHR', ' ', N, 1, N, -1 ) )
            MAXB = MAX( ILAENV( 8, 'DHSEQR', 'SV', N, 1, N, -1 ), 2 )
            K = MIN( MAXB, N, MAX( 2, ILAENV( 4, 'DHSEQR', 'SV', N, 1,
     $          N, -1 ) ) )
            HSWORK = MAX( K*( K+2 ), 2*N )
            MAXWRK = MAX( MAXWRK, N+1, N+HSWORK )
            MAXWRK = MAX( MAXWRK, 4*N )
         END IF
         WORK( 1 ) = MAXWRK
      END IF
      IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
         INFO = -13
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DGEEV ', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
*     Get machine constants
*
      EPS = DLAMCH( 'P' )
      SMLNUM = DLAMCH( 'S' )
      BIGNUM = ONE / SMLNUM
      CALL DLABAD( SMLNUM, BIGNUM )
      SMLNUM = SQRT( SMLNUM ) / EPS
      BIGNUM = ONE / SMLNUM
*
*     Scale A if max element outside range [SMLNUM,BIGNUM]
*
      ANRM = DLANGE( 'M', N, N, A, LDA, DUM )
      SCALEA = .FALSE.
      IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
         SCALEA = .TRUE.
         CSCALE = SMLNUM
      ELSE IF( ANRM.GT.BIGNUM ) THEN
         SCALEA = .TRUE.
         CSCALE = BIGNUM
      END IF
      IF( SCALEA )
     $   CALL DLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
*
*     Balance the matrix
*     (Workspace: need N)
*
      IBAL = 1
      CALL DGEBAL( 'B', N, A, LDA, ILO, IHI, WORK( IBAL ), IERR )
*
*     Reduce to upper Hessenberg form
*     (Workspace: need 3*N, prefer 2*N+N*NB)
*
      ITAU = IBAL + N
      IWRK = ITAU + N
      CALL DGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
     $             LWORK-IWRK+1, IERR )
*
      IF( WANTVL ) THEN
*
*        Want left eigenvectors
*        Copy Householder vectors to VL
*
         SIDE = 'L'
         CALL DLACPY( 'L', N, N, A, LDA, VL, LDVL )
*
*        Generate orthogonal matrix in VL
*        (Workspace: need 3*N-1, prefer 2*N+(N-1)*NB)
*
         CALL DORGHR( N, ILO, IHI, VL, LDVL, WORK( ITAU ), WORK( IWRK ),
     $                LWORK-IWRK+1, IERR )
*
*        Perform QR iteration, accumulating Schur vectors in VL
*        (Workspace: need N+1, prefer N+HSWORK (see comments) )
*
         IWRK = ITAU
         CALL DHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, WR, WI, VL, LDVL,
     $                WORK( IWRK ), LWORK-IWRK+1, INFO )
*
         IF( WANTVR ) THEN
*
*           Want left and right eigenvectors
*           Copy Schur vectors to VR
*
            SIDE = 'B'
            CALL DLACPY( 'F', N, N, VL, LDVL, VR, LDVR )
         END IF
*
      ELSE IF( WANTVR ) THEN
*
*        Want right eigenvectors
*        Copy Householder vectors to VR
*
         SIDE = 'R'
         CALL DLACPY( 'L', N, N, A, LDA, VR, LDVR )
*
*        Generate orthogonal matrix in VR
*        (Workspace: need 3*N-1, prefer 2*N+(N-1)*NB)
*
         CALL DORGHR( N, ILO, IHI, VR, LDVR, WORK( ITAU ), WORK( IWRK ),
     $                LWORK-IWRK+1, IERR )
*
*        Perform QR iteration, accumulating Schur vectors in VR
*        (Workspace: need N+1, prefer N+HSWORK (see comments) )
*
         IWRK = ITAU
         CALL DHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, WR, WI, VR, LDVR,
     $                WORK( IWRK ), LWORK-IWRK+1, INFO )
*
      ELSE
*
*        Compute eigenvalues only
*        (Workspace: need N+1, prefer N+HSWORK (see comments) )
*
         IWRK = ITAU
         CALL DHSEQR( 'E', 'N', N, ILO, IHI, A, LDA, WR, WI, VR, LDVR,
     $                WORK( IWRK ), LWORK-IWRK+1, INFO )
      END IF
*
*     If INFO > 0 from DHSEQR, then quit
*
      IF( INFO.GT.0 )
     $   GO TO 50
*
      IF( WANTVL .OR. WANTVR ) THEN
*
*        Compute left and/or right eigenvectors
*        (Workspace: need 4*N)
*
         CALL DTREVC( SIDE, 'B', SELECT, N, A, LDA, VL, LDVL, VR, LDVR,
     $                N, NOUT, WORK( IWRK ), IERR )
      END IF
*
      IF( WANTVL ) THEN
*
*        Undo balancing of left eigenvectors
*        (Workspace: need N)
*
         CALL DGEBAK( 'B', 'L', N, ILO, IHI, WORK( IBAL ), N, VL, LDVL,
     $                IERR )
*
*        Normalize left eigenvectors and make largest component real
*
         DO 20 I = 1, N
            IF( WI( I ).EQ.ZERO ) THEN
               SCL = ONE / DNRM2( N, VL( 1, I ), 1 )
               CALL DSCAL( N, SCL, VL( 1, I ), 1 )
            ELSE IF( WI( I ).GT.ZERO ) THEN
               SCL = ONE / DLAPY2( DNRM2( N, VL( 1, I ), 1 ),
     $               DNRM2( N, VL( 1, I+1 ), 1 ) )
               CALL DSCAL( N, SCL, VL( 1, I ), 1 )
               CALL DSCAL( N, SCL, VL( 1, I+1 ), 1 )
               DO 10 K = 1, N
                  WORK( IWRK+K-1 ) = VL( K, I )**2 + VL( K, I+1 )**2
   10          CONTINUE
               K = IDAMAX( N, WORK( IWRK ), 1 )
               CALL DLARTG( VL( K, I ), VL( K, I+1 ), CS, SN, R )
               CALL DROT( N, VL( 1, I ), 1, VL( 1, I+1 ), 1, CS, SN )
               VL( K, I+1 ) = ZERO
            END IF
   20    CONTINUE
      END IF
*
      IF( WANTVR ) THEN
*
*        Undo balancing of right eigenvectors
*        (Workspace: need N)
*
         CALL DGEBAK( 'B', 'R', N, ILO, IHI, WORK( IBAL ), N, VR, LDVR,
     $                IERR )
*
*        Normalize right eigenvectors and make largest component real
*
         DO 40 I = 1, N
            IF( WI( I ).EQ.ZERO ) THEN
               SCL = ONE / DNRM2( N, VR( 1, I ), 1 )
               CALL DSCAL( N, SCL, VR( 1, I ), 1 )
            ELSE IF( WI( I ).GT.ZERO ) THEN
               SCL = ONE / DLAPY2( DNRM2( N, VR( 1, I ), 1 ),
     $               DNRM2( N, VR( 1, I+1 ), 1 ) )
               CALL DSCAL( N, SCL, VR( 1, I ), 1 )
               CALL DSCAL( N, SCL, VR( 1, I+1 ), 1 )
               DO 30 K = 1, N
                  WORK( IWRK+K-1 ) = VR( K, I )**2 + VR( K, I+1 )**2
   30          CONTINUE
               K = IDAMAX( N, WORK( IWRK ), 1 )
               CALL DLARTG( VR( K, I ), VR( K, I+1 ), CS, SN, R )
               CALL DROT( N, VR( 1, I ), 1, VR( 1, I+1 ), 1, CS, SN )
               VR( K, I+1 ) = ZERO
            END IF
   40    CONTINUE
      END IF
*
*     Undo scaling if necessary
*
   50 CONTINUE
      IF( SCALEA ) THEN
         CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N-INFO, 1, WR( INFO+1 ),
     $                MAX( N-INFO, 1 ), IERR )
         CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N-INFO, 1, WI( INFO+1 ),
     $                MAX( N-INFO, 1 ), IERR )
         IF( INFO.GT.0 ) THEN
            CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WR, N,
     $                   IERR )
            CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WI, N,
     $                   IERR )
         END IF
      END IF
*
      WORK( 1 ) = MAXWRK
      RETURN
*
*     End of DGEEV
*
      END

      SUBROUTINE DLABAD( SMALL, LARGE )
*
*  -- LAPACK auxiliary routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     October 31, 1992
*
*     .. Scalar Arguments ..
      DOUBLE PRECISION   LARGE, SMALL
*     ..
*
*  Purpose
*  =======
*
*  DLABAD takes as input the values computed by DLAMCH for underflow and
*  overflow, and returns the square root of each of these values if the
*  log of LARGE is sufficiently large.  This subroutine is intended to
*  identify machines with a large exponent range, such as the Crays, and
*  redefine the underflow and overflow limits to be the square roots of
*  the values computed by DLAMCH.  This subroutine is needed because
*  DLAMCH does not compensate for poor arithmetic in the upper half of
*  the exponent range, as is found on a Cray.
*
*  Arguments
*  =========
*
*  SMALL   (input/output) DOUBLE PRECISION
*          On entry, the underflow threshold as computed by DLAMCH.
*          On exit, if LOG10(LARGE) is sufficiently large, the square
*          root of SMALL, otherwise unchanged.
*
*  LARGE   (input/output) DOUBLE PRECISION
*          On entry, the overflow threshold as computed by DLAMCH.
*          On exit, if LOG10(LARGE) is sufficiently large, the square
*          root of LARGE, otherwise unchanged.
*
*  =====================================================================
*
*     .. Intrinsic Functions ..
      INTRINSIC          LOG10, SQRT
*     ..
*     .. Executable Statements ..
*
*     If it looks like we're on a Cray, take the square root of
*     SMALL and LARGE to avoid overflow and underflow problems.
*
      IF( LOG10( LARGE ).GT.2000.D0 ) THEN
         SMALL = SQRT( SMALL )
         LARGE = SQRT( LARGE )
      END IF
*
      RETURN
*
*     End of DLABAD
*
      END
      DOUBLE PRECISION FUNCTION DLANGE( NORM, M, N, A, LDA, WORK )
*
*  -- LAPACK auxiliary routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     October 31, 1992
*
*     .. Scalar Arguments ..
      CHARACTER          NORM
      INTEGER            LDA, M, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  DLANGE  returns the value of the one norm,  or the Frobenius norm, or
*  the  infinity norm,  or the  element of  largest absolute value  of a
*  real matrix A.
*
*  Description
*  ===========
*
*  DLANGE returns the value
*
*     DLANGE = ( max(abs(A(i,j))), NORM = 'M' or 'm'
*              (
*              ( norm1(A),         NORM = '1', 'O' or 'o'
*              (
*              ( normI(A),         NORM = 'I' or 'i'
*              (
*              ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
*
*  where  norm1  denotes the  one norm of a matrix (maximum column sum),
*  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
*  normF  denotes the  Frobenius norm of a matrix (square root of sum of
*  squares).  Note that  max(abs(A(i,j)))  is not a  matrix norm.
*
*  Arguments
*  =========
*
*  NORM    (input) CHARACTER*1
*          Specifies the value to be returned in DLANGE as described
*          above.
*
*  M       (input) INTEGER
*          The number of rows of the matrix A.  M >= 0.  When M = 0,
*          DLANGE is set to zero.
*
*  N       (input) INTEGER
*          The number of columns of the matrix A.  N >= 0.  When N = 0,
*          DLANGE is set to zero.
*
*  A       (input) DOUBLE PRECISION array, dimension (LDA,N)
*          The m by n matrix A.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(M,1).
*
*  WORK    (workspace) DOUBLE PRECISION array, dimension (LWORK),
*          where LWORK >= M when NORM = 'I'; otherwise, WORK is not
*          referenced.
*
* =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, J
      DOUBLE PRECISION   SCALE, SUM, VALUE
*     ..
*     .. External Subroutines ..
      EXTERNAL           DLASSQ
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, MIN, SQRT
*     ..
*     .. Executable Statements ..
*
      IF( MIN( M, N ).EQ.0 ) THEN
         VALUE = ZERO
      ELSE IF( LSAME( NORM, 'M' ) ) THEN
*
*        Find max(abs(A(i,j))).
*
         VALUE = ZERO
         DO 20 J = 1, N
            DO 10 I = 1, M
               VALUE = MAX( VALUE, ABS( A( I, J ) ) )
   10       CONTINUE
   20    CONTINUE
      ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
*
*        Find norm1(A).
*
         VALUE = ZERO
         DO 40 J = 1, N
            SUM = ZERO
            DO 30 I = 1, M
               SUM = SUM + ABS( A( I, J ) )
   30       CONTINUE
            VALUE = MAX( VALUE, SUM )
   40    CONTINUE
      ELSE IF( LSAME( NORM, 'I' ) ) THEN
*
*        Find normI(A).
*
         DO 50 I = 1, M
            WORK( I ) = ZERO
   50    CONTINUE
         DO 70 J = 1, N
            DO 60 I = 1, M
               WORK( I ) = WORK( I ) + ABS( A( I, J ) )
   60       CONTINUE
   70    CONTINUE
         VALUE = ZERO
         DO 80 I = 1, M
            VALUE = MAX( VALUE, WORK( I ) )
   80    CONTINUE
      ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
*
*        Find normF(A).
*
         SCALE = ZERO
         SUM = ONE
         DO 90 J = 1, N
            CALL DLASSQ( M, A( 1, J ), 1, SCALE, SUM )
   90    CONTINUE
         VALUE = SCALE*SQRT( SUM )
      END IF
*
      DLANGE = VALUE
      RETURN
*
*     End of DLANGE
*
      END
      SUBROUTINE DGEBAL( JOB, N, A, LDA, ILO, IHI, SCALE, INFO )
*
*  -- LAPACK routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     June 30, 1999
*
*     .. Scalar Arguments ..
      CHARACTER          JOB
      INTEGER            IHI, ILO, INFO, LDA, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), SCALE( * )
*     ..
*
*  Purpose
*  =======
*
*  DGEBAL balances a general real matrix A.  This involves, first,
*  permuting A by a similarity transformation to isolate eigenvalues
*  in the first 1 to ILO-1 and last IHI+1 to N elements on the
*  diagonal; and second, applying a diagonal similarity transformation
*  to rows and columns ILO to IHI to make the rows and columns as
*  close in norm as possible.  Both steps are optional.
*
*  Balancing may reduce the 1-norm of the matrix, and improve the
*  accuracy of the computed eigenvalues and/or eigenvectors.
*
*  Arguments
*  =========
*
*  JOB     (input) CHARACTER*1
*          Specifies the operations to be performed on A:
*          = 'N':  none:  simply set ILO = 1, IHI = N, SCALE(I) = 1.0
*                  for i = 1,...,N;
*          = 'P':  permute only;
*          = 'S':  scale only;
*          = 'B':  both permute and scale.
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
*          On entry, the input matrix A.
*          On exit,  A is overwritten by the balanced matrix.
*          If JOB = 'N', A is not referenced.
*          See Further Details.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N).
*
*  ILO     (output) INTEGER
*  IHI     (output) INTEGER
*          ILO and IHI are set to integers such that on exit
*          A(i,j) = 0 if i > j and j = 1,...,ILO-1 or I = IHI+1,...,N.
*          If JOB = 'N' or 'S', ILO = 1 and IHI = N.
*
*  SCALE   (output) DOUBLE PRECISION array, dimension (N)
*          Details of the permutations and scaling factors applied to
*          A.  If P(j) is the index of the row and column interchanged
*          with row and column j and D(j) is the scaling factor
*          applied to row and column j, then
*          SCALE(j) = P(j)    for j = 1,...,ILO-1
*                   = D(j)    for j = ILO,...,IHI
*                   = P(j)    for j = IHI+1,...,N.
*          The order in which the interchanges are made is N to IHI+1,
*          then 1 to ILO-1.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit.
*          < 0:  if INFO = -i, the i-th argument had an illegal value.
*
*  Further Details
*  ===============
*
*  The permutations consist of row and column interchanges which put
*  the matrix in the form
*
*             ( T1   X   Y  )
*     P A P = (  0   B   Z  )
*             (  0   0   T2 )
*
*  where T1 and T2 are upper triangular matrices whose eigenvalues lie
*  along the diagonal.  The column indices ILO and IHI mark the starting
*  and ending columns of the submatrix B. Balancing consists of applying
*  a diagonal similarity transformation inv(D) * B * D to make the
*  1-norms of each row of B and its corresponding column nearly equal.
*  The output matrix is
*
*     ( T1     X*D          Y    )
*     (  0  inv(D)*B*D  inv(D)*Z ).
*     (  0      0           T2   )
*
*  Information about the permutations P and the diagonal matrix D is
*  returned in the vector SCALE.
*
*  This subroutine is based on the EISPACK routine BALANC.
*
*  Modified by Tzu-Yi Chen, Computer Science Division, University of
*    California at Berkeley, USA
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
      DOUBLE PRECISION   SCLFAC
      PARAMETER          ( SCLFAC = 0.8D+1 )
      DOUBLE PRECISION   FACTOR
      PARAMETER          ( FACTOR = 0.95D+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            NOCONV
      INTEGER            I, ICA, IEXC, IRA, J, K, L, M
      DOUBLE PRECISION   C, CA, F, G, R, RA, S, SFMAX1, SFMAX2, SFMIN1,
     $                   SFMIN2
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            IDAMAX
      DOUBLE PRECISION   DLAMCH
      EXTERNAL           LSAME, IDAMAX, DLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           DSCAL, DSWAP, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters
*
      INFO = 0
      IF( .NOT.LSAME( JOB, 'N' ) .AND. .NOT.LSAME( JOB, 'P' ) .AND.
     $    .NOT.LSAME( JOB, 'S' ) .AND. .NOT.LSAME( JOB, 'B' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -4
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DGEBAL', -INFO )
         RETURN
      END IF
*
      K = 1
      L = N
*
      IF( N.EQ.0 )
     $   GO TO 210
*
      IF( LSAME( JOB, 'N' ) ) THEN
         DO 10 I = 1, N
            SCALE( I ) = ONE
   10    CONTINUE
         GO TO 210
      END IF
*
      IF( LSAME( JOB, 'S' ) )
     $   GO TO 120
*
*     Permutation to isolate eigenvalues if possible
*
      GO TO 50
*
*     Row and column exchange.
*
   20 CONTINUE
      SCALE( M ) = J
      IF( J.EQ.M )
     $   GO TO 30
*
      CALL DSWAP( L, A( 1, J ), 1, A( 1, M ), 1 )
      CALL DSWAP( N-K+1, A( J, K ), LDA, A( M, K ), LDA )
*
   30 CONTINUE
      GO TO ( 40, 80 )IEXC
*
*     Search for rows isolating an eigenvalue and push them down.
*
   40 CONTINUE
      IF( L.EQ.1 )
     $   GO TO 210
      L = L - 1
*
   50 CONTINUE
      DO 70 J = L, 1, -1
*
         DO 60 I = 1, L
            IF( I.EQ.J )
     $         GO TO 60
            IF( A( J, I ).NE.ZERO )
     $         GO TO 70
   60    CONTINUE
*
         M = L
         IEXC = 1
         GO TO 20
   70 CONTINUE
*
      GO TO 90
*
*     Search for columns isolating an eigenvalue and push them left.
*
   80 CONTINUE
      K = K + 1
*
   90 CONTINUE
      DO 110 J = K, L
*
         DO 100 I = K, L
            IF( I.EQ.J )
     $         GO TO 100
            IF( A( I, J ).NE.ZERO )
     $         GO TO 110
  100    CONTINUE
*
         M = K
         IEXC = 2
         GO TO 20
  110 CONTINUE
*
  120 CONTINUE
      DO 130 I = K, L
         SCALE( I ) = ONE
  130 CONTINUE
*
      IF( LSAME( JOB, 'P' ) )
     $   GO TO 210
*
*     Balance the submatrix in rows K to L.
*
*     Iterative loop for norm reduction
*
      SFMIN1 = DLAMCH( 'S' ) / DLAMCH( 'P' )
      SFMAX1 = ONE / SFMIN1
      SFMIN2 = SFMIN1*SCLFAC
      SFMAX2 = ONE / SFMIN2
  140 CONTINUE
      NOCONV = .FALSE.
*
      DO 200 I = K, L
         C = ZERO
         R = ZERO
*
         DO 150 J = K, L
            IF( J.EQ.I )
     $         GO TO 150
            C = C + ABS( A( J, I ) )
            R = R + ABS( A( I, J ) )
  150    CONTINUE
         ICA = IDAMAX( L, A( 1, I ), 1 )
         CA = ABS( A( ICA, I ) )
         IRA = IDAMAX( N-K+1, A( I, K ), LDA )
         RA = ABS( A( I, IRA+K-1 ) )
*
*        Guard against zero C or R due to underflow.
*
         IF( C.EQ.ZERO .OR. R.EQ.ZERO )
     $      GO TO 200
         G = R / SCLFAC
         F = ONE
         S = C + R
  160    CONTINUE
         IF( C.GE.G .OR. MAX( F, C, CA ).GE.SFMAX2 .OR.
     $       MIN( R, G, RA ).LE.SFMIN2 )GO TO 170
         F = F*SCLFAC
         C = C*SCLFAC
         CA = CA*SCLFAC
         R = R / SCLFAC
         G = G / SCLFAC
         RA = RA / SCLFAC
         GO TO 160
*
  170    CONTINUE
         G = C / SCLFAC
  180    CONTINUE
         IF( G.LT.R .OR. MAX( R, RA ).GE.SFMAX2 .OR.
     $       MIN( F, C, G, CA ).LE.SFMIN2 )GO TO 190
         F = F / SCLFAC
         C = C / SCLFAC
         G = G / SCLFAC
         CA = CA / SCLFAC
         R = R*SCLFAC
         RA = RA*SCLFAC
         GO TO 180
*
*        Now balance.
*
  190    CONTINUE
         IF( ( C+R ).GE.FACTOR*S )
     $      GO TO 200
         IF( F.LT.ONE .AND. SCALE( I ).LT.ONE ) THEN
            IF( F*SCALE( I ).LE.SFMIN1 )
     $         GO TO 200
         END IF
         IF( F.GT.ONE .AND. SCALE( I ).GT.ONE ) THEN
            IF( SCALE( I ).GE.SFMAX1 / F )
     $         GO TO 200
         END IF
         G = ONE / F
         SCALE( I ) = SCALE( I )*F
         NOCONV = .TRUE.
*
         CALL DSCAL( N-K+1, G, A( I, K ), LDA )
         CALL DSCAL( L, F, A( 1, I ), 1 )
*
  200 CONTINUE
*
      IF( NOCONV )
     $   GO TO 140
*
  210 CONTINUE
      ILO = K
      IHI = L
*
      RETURN
*
*     End of DGEBAL
*
      END
      SUBROUTINE DGEHRD( N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO )
*
*  -- LAPACK routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     June 30, 1999
*
*     .. Scalar Arguments ..
      INTEGER            IHI, ILO, INFO, LDA, LWORK, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  DGEHRD reduces a real general matrix A to upper Hessenberg form H by
*  an orthogonal similarity transformation:  Q' * A * Q = H .
*
*  Arguments
*  =========
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  ILO     (input) INTEGER
*  IHI     (input) INTEGER
*          It is assumed that A is already upper triangular in rows
*          and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
*          set by a previous call to DGEBAL; otherwise they should be
*          set to 1 and N respectively. See Further Details.
*          1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
*
*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
*          On entry, the N-by-N general matrix to be reduced.
*          On exit, the upper triangle and the first subdiagonal of A
*          are overwritten with the upper Hessenberg matrix H, and the
*          elements below the first subdiagonal, with the array TAU,
*          represent the orthogonal matrix Q as a product of elementary
*          reflectors. See Further Details.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N).
*
*  TAU     (output) DOUBLE PRECISION array, dimension (N-1)
*          The scalar factors of the elementary reflectors (see Further
*          Details). Elements 1:ILO-1 and IHI:N-1 of TAU are set to
*          zero.
*
*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
*  LWORK   (input) INTEGER
*          The length of the array WORK.  LWORK >= max(1,N).
*          For optimum performance LWORK >= N*NB, where NB is the
*          optimal blocksize.
*
*          If LWORK = -1, then a workspace query is assumed; the routine
*          only calculates the optimal size of the WORK array, returns
*          this value as the first entry of the WORK array, and no error
*          message related to LWORK is issued by XERBLA.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value.
*
*  Further Details
*  ===============
*
*  The matrix Q is represented as a product of (ihi-ilo) elementary
*  reflectors
*
*     Q = H(ilo) H(ilo+1) . . . H(ihi-1).
*
*  Each H(i) has the form
*
*     H(i) = I - tau * v * v'
*
*  where tau is a real scalar, and v is a real vector with
*  v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on
*  exit in A(i+2:ihi,i), and tau in TAU(i).
*
*  The contents of A are illustrated by the following example, with
*  n = 7, ilo = 2 and ihi = 6:
*
*  on entry,                        on exit,
*
*  ( a   a   a   a   a   a   a )    (  a   a   h   h   h   h   a )
*  (     a   a   a   a   a   a )    (      a   h   h   h   h   a )
*  (     a   a   a   a   a   a )    (      h   h   h   h   h   h )
*  (     a   a   a   a   a   a )    (      v2  h   h   h   h   h )
*  (     a   a   a   a   a   a )    (      v2  v3  h   h   h   h )
*  (     a   a   a   a   a   a )    (      v2  v3  v4  h   h   h )
*  (                         a )    (                          a )
*
*  where a denotes an element of the original matrix A, h denotes a
*  modified element of the upper Hessenberg matrix H, and vi denotes an
*  element of the vector defining H(i).
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            NBMAX, LDT
      PARAMETER          ( NBMAX = 64, LDT = NBMAX+1 )
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            LQUERY
      INTEGER            I, IB, IINFO, IWS, LDWORK, LWKOPT, NB, NBMIN,
     $                   NH, NX
      DOUBLE PRECISION   EI
*     ..
*     .. Local Arrays ..
      DOUBLE PRECISION   T( LDT, NBMAX )
*     ..
*     .. External Subroutines ..
      EXTERNAL           DGEHD2, DGEMM, DLAHRD, DLARFB, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
*     ..
*     .. External Functions ..
      INTEGER            ILAENV
      EXTERNAL           ILAENV
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters
*
      INFO = 0
      NB = MIN( NBMAX, ILAENV( 1, 'DGEHRD', ' ', N, ILO, IHI, -1 ) )
      LWKOPT = N*NB
      WORK( 1 ) = LWKOPT
      LQUERY = ( LWORK.EQ.-1 )
      IF( N.LT.0 ) THEN
         INFO = -1
      ELSE IF( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN
         INFO = -2
      ELSE IF( IHI.LT.MIN( ILO, N ) .OR. IHI.GT.N ) THEN
         INFO = -3
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -5
      ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
         INFO = -8
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DGEHRD', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
*     Set elements 1:ILO-1 and IHI:N-1 of TAU to zero
*
      DO 10 I = 1, ILO - 1
         TAU( I ) = ZERO
   10 CONTINUE
      DO 20 I = MAX( 1, IHI ), N - 1
         TAU( I ) = ZERO
   20 CONTINUE
*
*     Quick return if possible
*
      NH = IHI - ILO + 1
      IF( NH.LE.1 ) THEN
         WORK( 1 ) = 1
         RETURN
      END IF
*
*     Determine the block size.
*
      NB = MIN( NBMAX, ILAENV( 1, 'DGEHRD', ' ', N, ILO, IHI, -1 ) )
      NBMIN = 2
      IWS = 1
      IF( NB.GT.1 .AND. NB.LT.NH ) THEN
*
*        Determine when to cross over from blocked to unblocked code
*        (last block is always handled by unblocked code).
*
         NX = MAX( NB, ILAENV( 3, 'DGEHRD', ' ', N, ILO, IHI, -1 ) )
         IF( NX.LT.NH ) THEN
*
*           Determine if workspace is large enough for blocked code.
*
            IWS = N*NB
            IF( LWORK.LT.IWS ) THEN
*
*              Not enough workspace to use optimal NB:  determine the
*              minimum value of NB, and reduce NB or force use of
*              unblocked code.
*
               NBMIN = MAX( 2, ILAENV( 2, 'DGEHRD', ' ', N, ILO, IHI,
     $                 -1 ) )
               IF( LWORK.GE.N*NBMIN ) THEN
                  NB = LWORK / N
               ELSE
                  NB = 1
               END IF
            END IF
         END IF
      END IF
      LDWORK = N
*
      IF( NB.LT.NBMIN .OR. NB.GE.NH ) THEN
*
*        Use unblocked code below
*
         I = ILO
*
      ELSE
*
*        Use blocked code
*
         DO 30 I = ILO, IHI - 1 - NX, NB
            IB = MIN( NB, IHI-I )
*
*           Reduce columns i:i+ib-1 to Hessenberg form, returning the
*           matrices V and T of the block reflector H = I - V*T*V'
*           which performs the reduction, and also the matrix Y = A*V*T
*
            CALL DLAHRD( IHI, I, IB, A( 1, I ), LDA, TAU( I ), T, LDT,
     $                   WORK, LDWORK )
*
*           Apply the block reflector H to A(1:ihi,i+ib:ihi) from the
*           right, computing  A := A - Y * V'. V(i+ib,ib-1) must be set
*           to 1.
*
            EI = A( I+IB, I+IB-1 )
            A( I+IB, I+IB-1 ) = ONE
            CALL DGEMM( 'No transpose', 'Transpose', IHI, IHI-I-IB+1,
     $                  IB, -ONE, WORK, LDWORK, A( I+IB, I ), LDA, ONE,
     $                  A( 1, I+IB ), LDA )
            A( I+IB, I+IB-1 ) = EI
*
*           Apply the block reflector H to A(i+1:ihi,i+ib:n) from the
*           left
*
            CALL DLARFB( 'Left', 'Transpose', 'Forward', 'Columnwise',
     $                   IHI-I, N-I-IB+1, IB, A( I+1, I ), LDA, T, LDT,
     $                   A( I+1, I+IB ), LDA, WORK, LDWORK )
   30    CONTINUE
      END IF
*
*     Use unblocked code to reduce the rest of the matrix
*
      CALL DGEHD2( N, I, IHI, A, LDA, TAU, WORK, IINFO )
      WORK( 1 ) = IWS
*
      RETURN
*
*     End of DGEHRD
*
      END
      SUBROUTINE DHSEQR( JOB, COMPZ, N, ILO, IHI, H, LDH, WR, WI, Z,
     $                   LDZ, WORK, LWORK, INFO )
*
*  -- LAPACK routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     June 30, 1999
*
*     .. Scalar Arguments ..
      CHARACTER          COMPZ, JOB
      INTEGER            IHI, ILO, INFO, LDH, LDZ, LWORK, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   H( LDH, * ), WI( * ), WORK( * ), WR( * ),
     $                   Z( LDZ, * )
*     ..
*
*  Purpose
*  =======
*
*  DHSEQR computes the eigenvalues of a real upper Hessenberg matrix H
*  and, optionally, the matrices T and Z from the Schur decomposition
*  H = Z T Z**T, where T is an upper quasi-triangular matrix (the Schur
*  form), and Z is the orthogonal matrix of Schur vectors.
*
*  Optionally Z may be postmultiplied into an input orthogonal matrix Q,
*  so that this routine can give the Schur factorization of a matrix A
*  which has been reduced to the Hessenberg form H by the orthogonal
*  matrix Q:  A = Q*H*Q**T = (QZ)*T*(QZ)**T.
*
*  Arguments
*  =========
*
*  JOB     (input) CHARACTER*1
*          = 'E':  compute eigenvalues only;
*          = 'S':  compute eigenvalues and the Schur form T.
*
*  COMPZ   (input) CHARACTER*1
*          = 'N':  no Schur vectors are computed;
*          = 'I':  Z is initialized to the unit matrix and the matrix Z
*                  of Schur vectors of H is returned;
*          = 'V':  Z must contain an orthogonal matrix Q on entry, and
*                  the product Q*Z is returned.
*
*  N       (input) INTEGER
*          The order of the matrix H.  N >= 0.
*
*  ILO     (input) INTEGER
*  IHI     (input) INTEGER
*          It is assumed that H is already upper triangular in rows
*          and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
*          set by a previous call to DGEBAL, and then passed to SGEHRD
*          when the matrix output by DGEBAL is reduced to Hessenberg
*          form. Otherwise ILO and IHI should be set to 1 and N
*          respectively.
*          1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
*
*  H       (input/output) DOUBLE PRECISION array, dimension (LDH,N)
*          On entry, the upper Hessenberg matrix H.
*          On exit, if JOB = 'S', H contains the upper quasi-triangular
*          matrix T from the Schur decomposition (the Schur form);
*          2-by-2 diagonal blocks (corresponding to complex conjugate
*          pairs of eigenvalues) are returned in standard form, with
*          H(i,i) = H(i+1,i+1) and H(i+1,i)*H(i,i+1) < 0. If JOB = 'E',
*          the contents of H are unspecified on exit.
*
*  LDH     (input) INTEGER
*          The leading dimension of the array H. LDH >= max(1,N).
*
*  WR      (output) DOUBLE PRECISION array, dimension (N)
*  WI      (output) DOUBLE PRECISION array, dimension (N)
*          The real and imaginary parts, respectively, of the computed
*          eigenvalues. If two eigenvalues are computed as a complex
*          conjugate pair, they are stored in consecutive elements of
*          WR and WI, say the i-th and (i+1)th, with WI(i) > 0 and
*          WI(i+1) < 0. If JOB = 'S', the eigenvalues are stored in the
*          same order as on the diagonal of the Schur form returned in
*          H, with WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2
*          diagonal block, WI(i) = sqrt(H(i+1,i)*H(i,i+1)) and
*          WI(i+1) = -WI(i).
*
*  Z       (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
*          If COMPZ = 'N': Z is not referenced.
*          If COMPZ = 'I': on entry, Z need not be set, and on exit, Z
*          contains the orthogonal matrix Z of the Schur vectors of H.
*          If COMPZ = 'V': on entry Z must contain an N-by-N matrix Q,
*          which is assumed to be equal to the unit matrix except for
*          the submatrix Z(ILO:IHI,ILO:IHI); on exit Z contains Q*Z.
*          Normally Q is the orthogonal matrix generated by DORGHR after
*          the call to DGEHRD which formed the Hessenberg matrix H.
*
*  LDZ     (input) INTEGER
*          The leading dimension of the array Z.
*          LDZ >= max(1,N) if COMPZ = 'I' or 'V'; LDZ >= 1 otherwise.
*
*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK.  LWORK >= max(1,N).
*
*          If LWORK = -1, then a workspace query is assumed; the routine
*          only calculates the optimal size of the WORK array, returns
*          this value as the first entry of the WORK array, and no error
*          message related to LWORK is issued by XERBLA.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*          > 0:  if INFO = i, DHSEQR failed to compute all of the
*                eigenvalues in a total of 30*(IHI-ILO+1) iterations;
*                elements 1:ilo-1 and i+1:n of WR and WI contain those
*                eigenvalues which have been successfully computed.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE, TWO
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
      DOUBLE PRECISION   CONST
      PARAMETER          ( CONST = 1.5D+0 )
      INTEGER            NSMAX, LDS
      PARAMETER          ( NSMAX = 15, LDS = NSMAX )
*     ..
*     .. Local Scalars ..
      LOGICAL            INITZ, LQUERY, WANTT, WANTZ
      INTEGER            I, I1, I2, IERR, II, ITEMP, ITN, ITS, J, K, L,
     $                   MAXB, NH, NR, NS, NV
      DOUBLE PRECISION   ABSW, OVFL, SMLNUM, TAU, TEMP, TST1, ULP, UNFL
*     ..
*     .. Local Arrays ..
      DOUBLE PRECISION   S( LDS, NSMAX ), V( NSMAX+1 ), VV( NSMAX+1 )
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            IDAMAX, ILAENV
      DOUBLE PRECISION   DLAMCH, DLANHS, DLAPY2
      EXTERNAL           LSAME, IDAMAX, ILAENV, DLAMCH, DLANHS, DLAPY2
*     ..
*     .. External Subroutines ..
      EXTERNAL           DCOPY, DGEMV, DLACPY, DLAHQR, DLARFG, DLARFX,
     $                   DLASET, DSCAL, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     Decode and test the input parameters
*
      WANTT = LSAME( JOB, 'S' )
      INITZ = LSAME( COMPZ, 'I' )
      WANTZ = INITZ .OR. LSAME( COMPZ, 'V' )
*
      INFO = 0
      WORK( 1 ) = MAX( 1, N )
      LQUERY = ( LWORK.EQ.-1 )
      IF( .NOT.LSAME( JOB, 'E' ) .AND. .NOT.WANTT ) THEN
         INFO = -1
      ELSE IF( .NOT.LSAME( COMPZ, 'N' ) .AND. .NOT.WANTZ ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN
         INFO = -4
      ELSE IF( IHI.LT.MIN( ILO, N ) .OR. IHI.GT.N ) THEN
         INFO = -5
      ELSE IF( LDH.LT.MAX( 1, N ) ) THEN
         INFO = -7
      ELSE IF( LDZ.LT.1 .OR. WANTZ .AND. LDZ.LT.MAX( 1, N ) ) THEN
         INFO = -11
      ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
         INFO = -13
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DHSEQR', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
*     Initialize Z, if necessary
*
      IF( INITZ )
     $   CALL DLASET( 'Full', N, N, ZERO, ONE, Z, LDZ )
*
*     Store the eigenvalues isolated by DGEBAL.
*
      DO 10 I = 1, ILO - 1
         WR( I ) = H( I, I )
         WI( I ) = ZERO
   10 CONTINUE
      DO 20 I = IHI + 1, N
         WR( I ) = H( I, I )
         WI( I ) = ZERO
   20 CONTINUE
*
*     Quick return if possible.
*
      IF( N.EQ.0 )
     $   RETURN
      IF( ILO.EQ.IHI ) THEN
         WR( ILO ) = H( ILO, ILO )
         WI( ILO ) = ZERO
         RETURN
      END IF
*
*     Set rows and columns ILO to IHI to zero below the first
*     subdiagonal.
*
      DO 40 J = ILO, IHI - 2
         DO 30 I = J + 2, N
            H( I, J ) = ZERO
   30    CONTINUE
   40 CONTINUE
      NH = IHI - ILO + 1
*
*     Determine the order of the multi-shift QR algorithm to be used.
*
      NS = ILAENV( 4, 'DHSEQR', JOB // COMPZ, N, ILO, IHI, -1 )
      MAXB = ILAENV( 8, 'DHSEQR', JOB // COMPZ, N, ILO, IHI, -1 )
      IF( NS.LE.2 .OR. NS.GT.NH .OR. MAXB.GE.NH ) THEN
*
*        Use the standard double-shift algorithm
*
         CALL DLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI, ILO,
     $                IHI, Z, LDZ, INFO )
         RETURN
      END IF
      MAXB = MAX( 3, MAXB )
      NS = MIN( NS, MAXB, NSMAX )
*
*     Now 2 < NS <= MAXB < NH.
*
*     Set machine-dependent constants for the stopping criterion.
*     If norm(H) <= sqrt(OVFL), overflow should not occur.
*
      UNFL = DLAMCH( 'Safe minimum' )
      OVFL = ONE / UNFL
      CALL DLABAD( UNFL, OVFL )
      ULP = DLAMCH( 'Precision' )
      SMLNUM = UNFL*( NH / ULP )
*
*     I1 and I2 are the indices of the first row and last column of H
*     to which transformations must be applied. If eigenvalues only are
*     being computed, I1 and I2 are set inside the main loop.
*
      IF( WANTT ) THEN
         I1 = 1
         I2 = N
      END IF
*
*     ITN is the total number of multiple-shift QR iterations allowed.
*
      ITN = 30*NH
*
*     The main loop begins here. I is the loop index and decreases from
*     IHI to ILO in steps of at most MAXB. Each iteration of the loop
*     works with the active submatrix in rows and columns L to I.
*     Eigenvalues I+1 to IHI have already converged. Either L = ILO or
*     H(L,L-1) is negligible so that the matrix splits.
*
      I = IHI
   50 CONTINUE
      L = ILO
      IF( I.LT.ILO )
     $   GO TO 170
*
*     Perform multiple-shift QR iterations on rows and columns ILO to I
*     until a submatrix of order at most MAXB splits off at the bottom
*     because a subdiagonal element has become negligible.
*
      DO 150 ITS = 0, ITN
*
*        Look for a single small subdiagonal element.
*
         DO 60 K = I, L + 1, -1
            TST1 = ABS( H( K-1, K-1 ) ) + ABS( H( K, K ) )
            IF( TST1.EQ.ZERO )
     $         TST1 = DLANHS( '1', I-L+1, H( L, L ), LDH, WORK )
            IF( ABS( H( K, K-1 ) ).LE.MAX( ULP*TST1, SMLNUM ) )
     $         GO TO 70
   60    CONTINUE
   70    CONTINUE
         L = K
         IF( L.GT.ILO ) THEN
*
*           H(L,L-1) is negligible.
*
            H( L, L-1 ) = ZERO
         END IF
*
*        Exit from loop if a submatrix of order <= MAXB has split off.
*
         IF( L.GE.I-MAXB+1 )
     $      GO TO 160
*
*        Now the active submatrix is in rows and columns L to I. If
*        eigenvalues only are being computed, only the active submatrix
*        need be transformed.
*
         IF( .NOT.WANTT ) THEN
            I1 = L
            I2 = I
         END IF
*
         IF( ITS.EQ.20 .OR. ITS.EQ.30 ) THEN
*
*           Exceptional shifts.
*
            DO 80 II = I - NS + 1, I
               WR( II ) = CONST*( ABS( H( II, II-1 ) )+
     $                    ABS( H( II, II ) ) )
               WI( II ) = ZERO
   80       CONTINUE
         ELSE
*
*           Use eigenvalues of trailing submatrix of order NS as shifts.
*
            CALL DLACPY( 'Full', NS, NS, H( I-NS+1, I-NS+1 ), LDH, S,
     $                   LDS )
            CALL DLAHQR( .FALSE., .FALSE., NS, 1, NS, S, LDS,
     $                   WR( I-NS+1 ), WI( I-NS+1 ), 1, NS, Z, LDZ,
     $                   IERR )
            IF( IERR.GT.0 ) THEN
*
*              If DLAHQR failed to compute all NS eigenvalues, use the
*              unconverged diagonal elements as the remaining shifts.
*
               DO 90 II = 1, IERR
                  WR( I-NS+II ) = S( II, II )
                  WI( I-NS+II ) = ZERO
   90          CONTINUE
            END IF
         END IF
*
*        Form the first column of (G-w(1)) (G-w(2)) . . . (G-w(ns))
*        where G is the Hessenberg submatrix H(L:I,L:I) and w is
*        the vector of shifts (stored in WR and WI). The result is
*        stored in the local array V.
*
         V( 1 ) = ONE
         DO 100 II = 2, NS + 1
            V( II ) = ZERO
  100    CONTINUE
         NV = 1
         DO 120 J = I - NS + 1, I
            IF( WI( J ).GE.ZERO ) THEN
               IF( WI( J ).EQ.ZERO ) THEN
*
*                 real shift
*
                  CALL DCOPY( NV+1, V, 1, VV, 1 )
                  CALL DGEMV( 'No transpose', NV+1, NV, ONE, H( L, L ),
     $                        LDH, VV, 1, -WR( J ), V, 1 )
                  NV = NV + 1
               ELSE IF( WI( J ).GT.ZERO ) THEN
*
*                 complex conjugate pair of shifts
*
                  CALL DCOPY( NV+1, V, 1, VV, 1 )
                  CALL DGEMV( 'No transpose', NV+1, NV, ONE, H( L, L ),
     $                        LDH, V, 1, -TWO*WR( J ), VV, 1 )
                  ITEMP = IDAMAX( NV+1, VV, 1 )
                  TEMP = ONE / MAX( ABS( VV( ITEMP ) ), SMLNUM )
                  CALL DSCAL( NV+1, TEMP, VV, 1 )
                  ABSW = DLAPY2( WR( J ), WI( J ) )
                  TEMP = ( TEMP*ABSW )*ABSW
                  CALL DGEMV( 'No transpose', NV+2, NV+1, ONE,
     $                        H( L, L ), LDH, VV, 1, TEMP, V, 1 )
                  NV = NV + 2
               END IF
*
*              Scale V(1:NV) so that max(abs(V(i))) = 1. If V is zero,
*              reset it to the unit vector.
*
               ITEMP = IDAMAX( NV, V, 1 )
               TEMP = ABS( V( ITEMP ) )
               IF( TEMP.EQ.ZERO ) THEN
                  V( 1 ) = ONE
                  DO 110 II = 2, NV
                     V( II ) = ZERO
  110             CONTINUE
               ELSE
                  TEMP = MAX( TEMP, SMLNUM )
                  CALL DSCAL( NV, ONE / TEMP, V, 1 )
               END IF
            END IF
  120    CONTINUE
*
*        Multiple-shift QR step
*
         DO 140 K = L, I - 1
*
*           The first iteration of this loop determines a reflection G
*           from the vector V and applies it from left and right to H,
*           thus creating a nonzero bulge below the subdiagonal.
*
*           Each subsequent iteration determines a reflection G to
*           restore the Hessenberg form in the (K-1)th column, and thus
*           chases the bulge one step toward the bottom of the active
*           submatrix. NR is the order of G.
*
            NR = MIN( NS+1, I-K+1 )
            IF( K.GT.L )
     $         CALL DCOPY( NR, H( K, K-1 ), 1, V, 1 )
            CALL DLARFG( NR, V( 1 ), V( 2 ), 1, TAU )
            IF( K.GT.L ) THEN
               H( K, K-1 ) = V( 1 )
               DO 130 II = K + 1, I
                  H( II, K-1 ) = ZERO
  130          CONTINUE
            END IF
            V( 1 ) = ONE
*
*           Apply G from the left to transform the rows of the matrix in
*           columns K to I2.
*
            CALL DLARFX( 'Left', NR, I2-K+1, V, TAU, H( K, K ), LDH,
     $                   WORK )
*
*           Apply G from the right to transform the columns of the
*           matrix in rows I1 to min(K+NR,I).
*
            CALL DLARFX( 'Right', MIN( K+NR, I )-I1+1, NR, V, TAU,
     $                   H( I1, K ), LDH, WORK )
*
            IF( WANTZ ) THEN
*
*              Accumulate transformations in the matrix Z
*
               CALL DLARFX( 'Right', NH, NR, V, TAU, Z( ILO, K ), LDZ,
     $                      WORK )
            END IF
  140    CONTINUE
*
  150 CONTINUE
*
*     Failure to converge in remaining number of iterations
*
      INFO = I
      RETURN
*
  160 CONTINUE
*
*     A submatrix of order <= MAXB in rows and columns L to I has split
*     off. Use the double-shift QR algorithm to handle it.
*
      CALL DLAHQR( WANTT, WANTZ, N, L, I, H, LDH, WR, WI, ILO, IHI, Z,
     $             LDZ, INFO )
      IF( INFO.GT.0 )
     $   RETURN
*
*     Decrement number of remaining iterations, and return to start of
*     the main loop with a new value of I.
*
      ITN = ITN - ITS
      I = L - 1
      GO TO 50
*
  170 CONTINUE
      WORK( 1 ) = MAX( 1, N )
      RETURN
*
*     End of DHSEQR
*
      END
      SUBROUTINE DTREVC( SIDE, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
     $                   LDVR, MM, M, WORK, INFO )
*
*  -- LAPACK routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     June 30, 1999
*
*     .. Scalar Arguments ..
      CHARACTER          HOWMNY, SIDE
      INTEGER            INFO, LDT, LDVL, LDVR, M, MM, N
*     ..
*     .. Array Arguments ..
      LOGICAL            SELECT( * )
      DOUBLE PRECISION   T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ),
     $                   WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  DTREVC computes some or all of the right and/or left eigenvectors of
*  a real upper quasi-triangular matrix T.
*
*  The right eigenvector x and the left eigenvector y of T corresponding
*  to an eigenvalue w are defined by:
*
*               T*x = w*x,     y'*T = w*y'
*
*  where y' denotes the conjugate transpose of the vector y.
*
*  If all eigenvectors are requested, the routine may either return the
*  matrices X and/or Y of right or left eigenvectors of T, or the
*  products Q*X and/or Q*Y, where Q is an input orthogonal
*  matrix. If T was obtained from the real-Schur factorization of an
*  original matrix A = Q*T*Q', then Q*X and Q*Y are the matrices of
*  right or left eigenvectors of A.
*
*  T must be in Schur canonical form (as returned by DHSEQR), that is,
*  block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each
*  2-by-2 diagonal block has its diagonal elements equal and its
*  off-diagonal elements of opposite sign.  Corresponding to each 2-by-2
*  diagonal block is a complex conjugate pair of eigenvalues and
*  eigenvectors; only one eigenvector of the pair is computed, namely
*  the one corresponding to the eigenvalue with positive imaginary part.
*
*  Arguments
*  =========
*
*  SIDE    (input) CHARACTER*1
*          = 'R':  compute right eigenvectors only;
*          = 'L':  compute left eigenvectors only;
*          = 'B':  compute both right and left eigenvectors.
*
*  HOWMNY  (input) CHARACTER*1
*          = 'A':  compute all right and/or left eigenvectors;
*          = 'B':  compute all right and/or left eigenvectors,
*                  and backtransform them using the input matrices
*                  supplied in VR and/or VL;
*          = 'S':  compute selected right and/or left eigenvectors,
*                  specified by the logical array SELECT.
*
*  SELECT  (input/output) LOGICAL array, dimension (N)
*          If HOWMNY = 'S', SELECT specifies the eigenvectors to be
*          computed.
*          If HOWMNY = 'A' or 'B', SELECT is not referenced.
*          To select the real eigenvector corresponding to a real
*          eigenvalue w(j), SELECT(j) must be set to .TRUE..  To select
*          the complex eigenvector corresponding to a complex conjugate
*          pair w(j) and w(j+1), either SELECT(j) or SELECT(j+1) must be
*          set to .TRUE.; then on exit SELECT(j) is .TRUE. and
*          SELECT(j+1) is .FALSE..
*
*  N       (input) INTEGER
*          The order of the matrix T. N >= 0.
*
*  T       (input) DOUBLE PRECISION array, dimension (LDT,N)
*          The upper quasi-triangular matrix T in Schur canonical form.
*
*  LDT     (input) INTEGER
*          The leading dimension of the array T. LDT >= max(1,N).
*
*  VL      (input/output) DOUBLE PRECISION array, dimension (LDVL,MM)
*          On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must
*          contain an N-by-N matrix Q (usually the orthogonal matrix Q
*          of Schur vectors returned by DHSEQR).
*          On exit, if SIDE = 'L' or 'B', VL contains:
*          if HOWMNY = 'A', the matrix Y of left eigenvectors of T;
*                           VL has the same quasi-lower triangular form
*                           as T'. If T(i,i) is a real eigenvalue, then
*                           the i-th column VL(i) of VL  is its
*                           corresponding eigenvector. If T(i:i+1,i:i+1)
*                           is a 2-by-2 block whose eigenvalues are
*                           complex-conjugate eigenvalues of T, then
*                           VL(i)+sqrt(-1)*VL(i+1) is the complex
*                           eigenvector corresponding to the eigenvalue
*                           with positive real part.
*          if HOWMNY = 'B', the matrix Q*Y;
*          if HOWMNY = 'S', the left eigenvectors of T specified by
*                           SELECT, stored consecutively in the columns
*                           of VL, in the same order as their
*                           eigenvalues.
*          A complex eigenvector corresponding to a complex eigenvalue
*          is stored in two consecutive columns, the first holding the
*          real part, and the second the imaginary part.
*          If SIDE = 'R', VL is not referenced.
*
*  LDVL    (input) INTEGER
*          The leading dimension of the array VL.  LDVL >= max(1,N) if
*          SIDE = 'L' or 'B'; LDVL >= 1 otherwise.
*
*  VR      (input/output) DOUBLE PRECISION array, dimension (LDVR,MM)
*          On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must
*          contain an N-by-N matrix Q (usually the orthogonal matrix Q
*          of Schur vectors returned by DHSEQR).
*          On exit, if SIDE = 'R' or 'B', VR contains:
*          if HOWMNY = 'A', the matrix X of right eigenvectors of T;
*                           VR has the same quasi-upper triangular form
*                           as T. If T(i,i) is a real eigenvalue, then
*                           the i-th column VR(i) of VR  is its
*                           corresponding eigenvector. If T(i:i+1,i:i+1)
*                           is a 2-by-2 block whose eigenvalues are
*                           complex-conjugate eigenvalues of T, then
*                           VR(i)+sqrt(-1)*VR(i+1) is the complex
*                           eigenvector corresponding to the eigenvalue
*                           with positive real part.
*          if HOWMNY = 'B', the matrix Q*X;
*          if HOWMNY = 'S', the right eigenvectors of T specified by
*                           SELECT, stored consecutively in the columns
*                           of VR, in the same order as their
*                           eigenvalues.
*          A complex eigenvector corresponding to a complex eigenvalue
*          is stored in two consecutive columns, the first holding the
*          real part and the second the imaginary part.
*          If SIDE = 'L', VR is not referenced.
*
*  LDVR    (input) INTEGER
*          The leading dimension of the array VR.  LDVR >= max(1,N) if
*          SIDE = 'R' or 'B'; LDVR >= 1 otherwise.
*
*  MM      (input) INTEGER
*          The number of columns in the arrays VL and/or VR. MM >= M.
*
*  M       (output) INTEGER
*          The number of columns in the arrays VL and/or VR actually
*          used to store the eigenvectors.
*          If HOWMNY = 'A' or 'B', M is set to N.
*          Each selected real eigenvector occupies one column and each
*          selected complex eigenvector occupies two columns.
*
*  WORK    (workspace) DOUBLE PRECISION array, dimension (3*N)
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*
*  Further Details
*  ===============
*
*  The algorithm used in this program is basically backward (forward)
*  substitution, with scaling to make the the code robust against
*  possible overflow.
*
*  Each eigenvector is normalized so that the element of largest
*  magnitude has magnitude 1; here the magnitude of a complex number
*  (x,y) is taken to be |x| + |y|.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            ALLV, BOTHV, LEFTV, OVER, PAIR, RIGHTV, SOMEV
      INTEGER            I, IERR, II, IP, IS, J, J1, J2, JNXT, K, KI, N2
      DOUBLE PRECISION   BETA, BIGNUM, EMAX, OVFL, REC, REMAX, SCALE,
     $                   SMIN, SMLNUM, ULP, UNFL, VCRIT, VMAX, WI, WR,
     $                   XNORM
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            IDAMAX
      DOUBLE PRECISION   DDOT, DLAMCH
      EXTERNAL           LSAME, IDAMAX, DDOT, DLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           DAXPY, DCOPY, DGEMV, DLALN2, DSCAL, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, SQRT
*     ..
*     .. Local Arrays ..
      DOUBLE PRECISION   X( 2, 2 )
*     ..
*     .. Executable Statements ..
*
*     Decode and test the input parameters
*
      BOTHV = LSAME( SIDE, 'B' )
      RIGHTV = LSAME( SIDE, 'R' ) .OR. BOTHV
      LEFTV = LSAME( SIDE, 'L' ) .OR. BOTHV
*
      ALLV = LSAME( HOWMNY, 'A' )
      OVER = LSAME( HOWMNY, 'B' )
      SOMEV = LSAME( HOWMNY, 'S' )
*
      INFO = 0
      IF( .NOT.RIGHTV .AND. .NOT.LEFTV ) THEN
         INFO = -1
      ELSE IF( .NOT.ALLV .AND. .NOT.OVER .AND. .NOT.SOMEV ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -4
      ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
         INFO = -6
      ELSE IF( LDVL.LT.1 .OR. ( LEFTV .AND. LDVL.LT.N ) ) THEN
         INFO = -8
      ELSE IF( LDVR.LT.1 .OR. ( RIGHTV .AND. LDVR.LT.N ) ) THEN
         INFO = -10
      ELSE
*
*        Set M to the number of columns required to store the selected
*        eigenvectors, standardize the array SELECT if necessary, and
*        test MM.
*
         IF( SOMEV ) THEN
            M = 0
            PAIR = .FALSE.
            DO 10 J = 1, N
               IF( PAIR ) THEN
                  PAIR = .FALSE.
                  SELECT( J ) = .FALSE.
               ELSE
                  IF( J.LT.N ) THEN
                     IF( T( J+1, J ).EQ.ZERO ) THEN
                        IF( SELECT( J ) )
     $                     M = M + 1
                     ELSE
                        PAIR = .TRUE.
                        IF( SELECT( J ) .OR. SELECT( J+1 ) ) THEN
                           SELECT( J ) = .TRUE.
                           M = M + 2
                        END IF
                     END IF
                  ELSE
                     IF( SELECT( N ) )
     $                  M = M + 1
                  END IF
               END IF
   10       CONTINUE
         ELSE
            M = N
         END IF
*
         IF( MM.LT.M ) THEN
            INFO = -11
         END IF
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DTREVC', -INFO )
         RETURN
      END IF
*
*     Quick return if possible.
*
      IF( N.EQ.0 )
     $   RETURN
*
*     Set the constants to control overflow.
*
      UNFL = DLAMCH( 'Safe minimum' )
      OVFL = ONE / UNFL
      CALL DLABAD( UNFL, OVFL )
      ULP = DLAMCH( 'Precision' )
      SMLNUM = UNFL*( N / ULP )
      BIGNUM = ( ONE-ULP ) / SMLNUM
*
*     Compute 1-norm of each column of strictly upper triangular
*     part of T to control overflow in triangular solver.
*
      WORK( 1 ) = ZERO
      DO 30 J = 2, N
         WORK( J ) = ZERO
         DO 20 I = 1, J - 1
            WORK( J ) = WORK( J ) + ABS( T( I, J ) )
   20    CONTINUE
   30 CONTINUE
*
*     Index IP is used to specify the real or complex eigenvalue:
*       IP = 0, real eigenvalue,
*            1, first of conjugate complex pair: (wr,wi)
*           -1, second of conjugate complex pair: (wr,wi)
*
      N2 = 2*N
*
      IF( RIGHTV ) THEN
*
*        Compute right eigenvectors.
*
         IP = 0
         IS = M
         DO 140 KI = N, 1, -1
*
            IF( IP.EQ.1 )
     $         GO TO 130
            IF( KI.EQ.1 )
     $         GO TO 40
            IF( T( KI, KI-1 ).EQ.ZERO )
     $         GO TO 40
            IP = -1
*
   40       CONTINUE
            IF( SOMEV ) THEN
               IF( IP.EQ.0 ) THEN
                  IF( .NOT.SELECT( KI ) )
     $               GO TO 130
               ELSE
                  IF( .NOT.SELECT( KI-1 ) )
     $               GO TO 130
               END IF
            END IF
*
*           Compute the KI-th eigenvalue (WR,WI).
*
            WR = T( KI, KI )
            WI = ZERO
            IF( IP.NE.0 )
     $         WI = SQRT( ABS( T( KI, KI-1 ) ) )*
     $              SQRT( ABS( T( KI-1, KI ) ) )
            SMIN = MAX( ULP*( ABS( WR )+ABS( WI ) ), SMLNUM )
*
            IF( IP.EQ.0 ) THEN
*
*              Real right eigenvector
*
               WORK( KI+N ) = ONE
*
*              Form right-hand side
*
               DO 50 K = 1, KI - 1
                  WORK( K+N ) = -T( K, KI )
   50          CONTINUE
*
*              Solve the upper quasi-triangular system:
*                 (T(1:KI-1,1:KI-1) - WR)*X = SCALE*WORK.
*
               JNXT = KI - 1
               DO 60 J = KI - 1, 1, -1
                  IF( J.GT.JNXT )
     $               GO TO 60
                  J1 = J
                  J2 = J
                  JNXT = J - 1
                  IF( J.GT.1 ) THEN
                     IF( T( J, J-1 ).NE.ZERO ) THEN
                        J1 = J - 1
                        JNXT = J - 2
                     END IF
                  END IF
*
                  IF( J1.EQ.J2 ) THEN
*
*                    1-by-1 diagonal block
*
                     CALL DLALN2( .FALSE., 1, 1, SMIN, ONE, T( J, J ),
     $                            LDT, ONE, ONE, WORK( J+N ), N, WR,
     $                            ZERO, X, 2, SCALE, XNORM, IERR )
*
*                    Scale X(1,1) to avoid overflow when updating
*                    the right-hand side.
*
                     IF( XNORM.GT.ONE ) THEN
                        IF( WORK( J ).GT.BIGNUM / XNORM ) THEN
                           X( 1, 1 ) = X( 1, 1 ) / XNORM
                           SCALE = SCALE / XNORM
                        END IF
                     END IF
*
*                    Scale if necessary
*
                     IF( SCALE.NE.ONE )
     $                  CALL DSCAL( KI, SCALE, WORK( 1+N ), 1 )
                     WORK( J+N ) = X( 1, 1 )
*
*                    Update right-hand side
*
                     CALL DAXPY( J-1, -X( 1, 1 ), T( 1, J ), 1,
     $                           WORK( 1+N ), 1 )
*
                  ELSE
*
*                    2-by-2 diagonal block
*
                     CALL DLALN2( .FALSE., 2, 1, SMIN, ONE,
     $                            T( J-1, J-1 ), LDT, ONE, ONE,
     $                            WORK( J-1+N ), N, WR, ZERO, X, 2,
     $                            SCALE, XNORM, IERR )
*
*                    Scale X(1,1) and X(2,1) to avoid overflow when
*                    updating the right-hand side.
*
                     IF( XNORM.GT.ONE ) THEN
                        BETA = MAX( WORK( J-1 ), WORK( J ) )
                        IF( BETA.GT.BIGNUM / XNORM ) THEN
                           X( 1, 1 ) = X( 1, 1 ) / XNORM
                           X( 2, 1 ) = X( 2, 1 ) / XNORM
                           SCALE = SCALE / XNORM
                        END IF
                     END IF
*
*                    Scale if necessary
*
                     IF( SCALE.NE.ONE )
     $                  CALL DSCAL( KI, SCALE, WORK( 1+N ), 1 )
                     WORK( J-1+N ) = X( 1, 1 )
                     WORK( J+N ) = X( 2, 1 )
*
*                    Update right-hand side
*
                     CALL DAXPY( J-2, -X( 1, 1 ), T( 1, J-1 ), 1,
     $                           WORK( 1+N ), 1 )
                     CALL DAXPY( J-2, -X( 2, 1 ), T( 1, J ), 1,
     $                           WORK( 1+N ), 1 )
                  END IF
   60          CONTINUE
*
*              Copy the vector x or Q*x to VR and normalize.
*
               IF( .NOT.OVER ) THEN
                  CALL DCOPY( KI, WORK( 1+N ), 1, VR( 1, IS ), 1 )
*
                  II = IDAMAX( KI, VR( 1, IS ), 1 )
                  REMAX = ONE / ABS( VR( II, IS ) )
                  CALL DSCAL( KI, REMAX, VR( 1, IS ), 1 )
*
                  DO 70 K = KI + 1, N
                     VR( K, IS ) = ZERO
   70             CONTINUE
               ELSE
                  IF( KI.GT.1 )
     $               CALL DGEMV( 'N', N, KI-1, ONE, VR, LDVR,
     $                           WORK( 1+N ), 1, WORK( KI+N ),
     $                           VR( 1, KI ), 1 )
*
                  II = IDAMAX( N, VR( 1, KI ), 1 )
                  REMAX = ONE / ABS( VR( II, KI ) )
                  CALL DSCAL( N, REMAX, VR( 1, KI ), 1 )
               END IF
*
            ELSE
*
*              Complex right eigenvector.
*
*              Initial solve
*                [ (T(KI-1,KI-1) T(KI-1,KI) ) - (WR + I* WI)]*X = 0.
*                [ (T(KI,KI-1)   T(KI,KI)   )               ]
*
               IF( ABS( T( KI-1, KI ) ).GE.ABS( T( KI, KI-1 ) ) ) THEN
                  WORK( KI-1+N ) = ONE
                  WORK( KI+N2 ) = WI / T( KI-1, KI )
               ELSE
                  WORK( KI-1+N ) = -WI / T( KI, KI-1 )
                  WORK( KI+N2 ) = ONE
               END IF
               WORK( KI+N ) = ZERO
               WORK( KI-1+N2 ) = ZERO
*
*              Form right-hand side
*
               DO 80 K = 1, KI - 2
                  WORK( K+N ) = -WORK( KI-1+N )*T( K, KI-1 )
                  WORK( K+N2 ) = -WORK( KI+N2 )*T( K, KI )
   80          CONTINUE
*
*              Solve upper quasi-triangular system:
*              (T(1:KI-2,1:KI-2) - (WR+i*WI))*X = SCALE*(WORK+i*WORK2)
*
               JNXT = KI - 2
               DO 90 J = KI - 2, 1, -1
                  IF( J.GT.JNXT )
     $               GO TO 90
                  J1 = J
                  J2 = J
                  JNXT = J - 1
                  IF( J.GT.1 ) THEN
                     IF( T( J, J-1 ).NE.ZERO ) THEN
                        J1 = J - 1
                        JNXT = J - 2
                     END IF
                  END IF
*
                  IF( J1.EQ.J2 ) THEN
*
*                    1-by-1 diagonal block
*
                     CALL DLALN2( .FALSE., 1, 2, SMIN, ONE, T( J, J ),
     $                            LDT, ONE, ONE, WORK( J+N ), N, WR, WI,
     $                            X, 2, SCALE, XNORM, IERR )
*
*                    Scale X(1,1) and X(1,2) to avoid overflow when
*                    updating the right-hand side.
*
                     IF( XNORM.GT.ONE ) THEN
                        IF( WORK( J ).GT.BIGNUM / XNORM ) THEN
                           X( 1, 1 ) = X( 1, 1 ) / XNORM
                           X( 1, 2 ) = X( 1, 2 ) / XNORM
                           SCALE = SCALE / XNORM
                        END IF
                     END IF
*
*                    Scale if necessary
*
                     IF( SCALE.NE.ONE ) THEN
                        CALL DSCAL( KI, SCALE, WORK( 1+N ), 1 )
                        CALL DSCAL( KI, SCALE, WORK( 1+N2 ), 1 )
                     END IF
                     WORK( J+N ) = X( 1, 1 )
                     WORK( J+N2 ) = X( 1, 2 )
*
*                    Update the right-hand side
*
                     CALL DAXPY( J-1, -X( 1, 1 ), T( 1, J ), 1,
     $                           WORK( 1+N ), 1 )
                     CALL DAXPY( J-1, -X( 1, 2 ), T( 1, J ), 1,
     $                           WORK( 1+N2 ), 1 )
*
                  ELSE
*
*                    2-by-2 diagonal block
*
                     CALL DLALN2( .FALSE., 2, 2, SMIN, ONE,
     $                            T( J-1, J-1 ), LDT, ONE, ONE,
     $                            WORK( J-1+N ), N, WR, WI, X, 2, SCALE,
     $                            XNORM, IERR )
*
*                    Scale X to avoid overflow when updating
*                    the right-hand side.
*
                     IF( XNORM.GT.ONE ) THEN
                        BETA = MAX( WORK( J-1 ), WORK( J ) )
                        IF( BETA.GT.BIGNUM / XNORM ) THEN
                           REC = ONE / XNORM
                           X( 1, 1 ) = X( 1, 1 )*REC
                           X( 1, 2 ) = X( 1, 2 )*REC
                           X( 2, 1 ) = X( 2, 1 )*REC
                           X( 2, 2 ) = X( 2, 2 )*REC
                           SCALE = SCALE*REC
                        END IF
                     END IF
*
*                    Scale if necessary
*
                     IF( SCALE.NE.ONE ) THEN
                        CALL DSCAL( KI, SCALE, WORK( 1+N ), 1 )
                        CALL DSCAL( KI, SCALE, WORK( 1+N2 ), 1 )
                     END IF
                     WORK( J-1+N ) = X( 1, 1 )
                     WORK( J+N ) = X( 2, 1 )
                     WORK( J-1+N2 ) = X( 1, 2 )
                     WORK( J+N2 ) = X( 2, 2 )
*
*                    Update the right-hand side
*
                     CALL DAXPY( J-2, -X( 1, 1 ), T( 1, J-1 ), 1,
     $                           WORK( 1+N ), 1 )
                     CALL DAXPY( J-2, -X( 2, 1 ), T( 1, J ), 1,
     $                           WORK( 1+N ), 1 )
                     CALL DAXPY( J-2, -X( 1, 2 ), T( 1, J-1 ), 1,
     $                           WORK( 1+N2 ), 1 )
                     CALL DAXPY( J-2, -X( 2, 2 ), T( 1, J ), 1,
     $                           WORK( 1+N2 ), 1 )
                  END IF
   90          CONTINUE
*
*              Copy the vector x or Q*x to VR and normalize.
*
               IF( .NOT.OVER ) THEN
                  CALL DCOPY( KI, WORK( 1+N ), 1, VR( 1, IS-1 ), 1 )
                  CALL DCOPY( KI, WORK( 1+N2 ), 1, VR( 1, IS ), 1 )
*
                  EMAX = ZERO
                  DO 100 K = 1, KI
                     EMAX = MAX( EMAX, ABS( VR( K, IS-1 ) )+
     $                      ABS( VR( K, IS ) ) )
  100             CONTINUE
*
                  REMAX = ONE / EMAX
                  CALL DSCAL( KI, REMAX, VR( 1, IS-1 ), 1 )
                  CALL DSCAL( KI, REMAX, VR( 1, IS ), 1 )
*
                  DO 110 K = KI + 1, N
                     VR( K, IS-1 ) = ZERO
                     VR( K, IS ) = ZERO
  110             CONTINUE
*
               ELSE
*
                  IF( KI.GT.2 ) THEN
                     CALL DGEMV( 'N', N, KI-2, ONE, VR, LDVR,
     $                           WORK( 1+N ), 1, WORK( KI-1+N ),
     $                           VR( 1, KI-1 ), 1 )
                     CALL DGEMV( 'N', N, KI-2, ONE, VR, LDVR,
     $                           WORK( 1+N2 ), 1, WORK( KI+N2 ),
     $                           VR( 1, KI ), 1 )
                  ELSE
                     CALL DSCAL( N, WORK( KI-1+N ), VR( 1, KI-1 ), 1 )
                     CALL DSCAL( N, WORK( KI+N2 ), VR( 1, KI ), 1 )
                  END IF
*
                  EMAX = ZERO
                  DO 120 K = 1, N
                     EMAX = MAX( EMAX, ABS( VR( K, KI-1 ) )+
     $                      ABS( VR( K, KI ) ) )
  120             CONTINUE
                  REMAX = ONE / EMAX
                  CALL DSCAL( N, REMAX, VR( 1, KI-1 ), 1 )
                  CALL DSCAL( N, REMAX, VR( 1, KI ), 1 )
               END IF
            END IF
*
            IS = IS - 1
            IF( IP.NE.0 )
     $         IS = IS - 1
  130       CONTINUE
            IF( IP.EQ.1 )
     $         IP = 0
            IF( IP.EQ.-1 )
     $         IP = 1
  140    CONTINUE
      END IF
*
      IF( LEFTV ) THEN
*
*        Compute left eigenvectors.
*
         IP = 0
         IS = 1
         DO 260 KI = 1, N
*
            IF( IP.EQ.-1 )
     $         GO TO 250
            IF( KI.EQ.N )
     $         GO TO 150
            IF( T( KI+1, KI ).EQ.ZERO )
     $         GO TO 150
            IP = 1
*
  150       CONTINUE
            IF( SOMEV ) THEN
               IF( .NOT.SELECT( KI ) )
     $            GO TO 250
            END IF
*
*           Compute the KI-th eigenvalue (WR,WI).
*
            WR = T( KI, KI )
            WI = ZERO
            IF( IP.NE.0 )
     $         WI = SQRT( ABS( T( KI, KI+1 ) ) )*
     $              SQRT( ABS( T( KI+1, KI ) ) )
            SMIN = MAX( ULP*( ABS( WR )+ABS( WI ) ), SMLNUM )
*
            IF( IP.EQ.0 ) THEN
*
*              Real left eigenvector.
*
               WORK( KI+N ) = ONE
*
*              Form right-hand side
*
               DO 160 K = KI + 1, N
                  WORK( K+N ) = -T( KI, K )
  160          CONTINUE
*
*              Solve the quasi-triangular system:
*                 (T(KI+1:N,KI+1:N) - WR)'*X = SCALE*WORK
*
               VMAX = ONE
               VCRIT = BIGNUM
*
               JNXT = KI + 1
               DO 170 J = KI + 1, N
                  IF( J.LT.JNXT )
     $               GO TO 170
                  J1 = J
                  J2 = J
                  JNXT = J + 1
                  IF( J.LT.N ) THEN
                     IF( T( J+1, J ).NE.ZERO ) THEN
                        J2 = J + 1
                        JNXT = J + 2
                     END IF
                  END IF
*
                  IF( J1.EQ.J2 ) THEN
*
*                    1-by-1 diagonal block
*
*                    Scale if necessary to avoid overflow when forming
*                    the right-hand side.
*
                     IF( WORK( J ).GT.VCRIT ) THEN
                        REC = ONE / VMAX
                        CALL DSCAL( N-KI+1, REC, WORK( KI+N ), 1 )
                        VMAX = ONE
                        VCRIT = BIGNUM
                     END IF
*
                     WORK( J+N ) = WORK( J+N ) -
     $                             DDOT( J-KI-1, T( KI+1, J ), 1,
     $                             WORK( KI+1+N ), 1 )
*
*                    Solve (T(J,J)-WR)'*X = WORK
*
                     CALL DLALN2( .FALSE., 1, 1, SMIN, ONE, T( J, J ),
     $                            LDT, ONE, ONE, WORK( J+N ), N, WR,
     $                            ZERO, X, 2, SCALE, XNORM, IERR )
*
*                    Scale if necessary
*
                     IF( SCALE.NE.ONE )
     $                  CALL DSCAL( N-KI+1, SCALE, WORK( KI+N ), 1 )
                     WORK( J+N ) = X( 1, 1 )
                     VMAX = MAX( ABS( WORK( J+N ) ), VMAX )
                     VCRIT = BIGNUM / VMAX
*
                  ELSE
*
*                    2-by-2 diagonal block
*
*                    Scale if necessary to avoid overflow when forming
*                    the right-hand side.
*
                     BETA = MAX( WORK( J ), WORK( J+1 ) )
                     IF( BETA.GT.VCRIT ) THEN
                        REC = ONE / VMAX
                        CALL DSCAL( N-KI+1, REC, WORK( KI+N ), 1 )
                        VMAX = ONE
                        VCRIT = BIGNUM
                     END IF
*
                     WORK( J+N ) = WORK( J+N ) -
     $                             DDOT( J-KI-1, T( KI+1, J ), 1,
     $                             WORK( KI+1+N ), 1 )
*
                     WORK( J+1+N ) = WORK( J+1+N ) -
     $                               DDOT( J-KI-1, T( KI+1, J+1 ), 1,
     $                               WORK( KI+1+N ), 1 )
*
*                    Solve
*                      [T(J,J)-WR   T(J,J+1)     ]'* X = SCALE*( WORK1 )
*                      [T(J+1,J)    T(J+1,J+1)-WR]             ( WORK2 )
*
                     CALL DLALN2( .TRUE., 2, 1, SMIN, ONE, T( J, J ),
     $                            LDT, ONE, ONE, WORK( J+N ), N, WR,
     $                            ZERO, X, 2, SCALE, XNORM, IERR )
*
*                    Scale if necessary
*
                     IF( SCALE.NE.ONE )
     $                  CALL DSCAL( N-KI+1, SCALE, WORK( KI+N ), 1 )
                     WORK( J+N ) = X( 1, 1 )
                     WORK( J+1+N ) = X( 2, 1 )
*
                     VMAX = MAX( ABS( WORK( J+N ) ),
     $                      ABS( WORK( J+1+N ) ), VMAX )
                     VCRIT = BIGNUM / VMAX
*
                  END IF
  170          CONTINUE
*
*              Copy the vector x or Q*x to VL and normalize.
*
               IF( .NOT.OVER ) THEN
                  CALL DCOPY( N-KI+1, WORK( KI+N ), 1, VL( KI, IS ), 1 )
*
                  II = IDAMAX( N-KI+1, VL( KI, IS ), 1 ) + KI - 1
                  REMAX = ONE / ABS( VL( II, IS ) )
                  CALL DSCAL( N-KI+1, REMAX, VL( KI, IS ), 1 )
*
                  DO 180 K = 1, KI - 1
                     VL( K, IS ) = ZERO
  180             CONTINUE
*
               ELSE
*
                  IF( KI.LT.N )
     $               CALL DGEMV( 'N', N, N-KI, ONE, VL( 1, KI+1 ), LDVL,
     $                           WORK( KI+1+N ), 1, WORK( KI+N ),
     $                           VL( 1, KI ), 1 )
*
                  II = IDAMAX( N, VL( 1, KI ), 1 )
                  REMAX = ONE / ABS( VL( II, KI ) )
                  CALL DSCAL( N, REMAX, VL( 1, KI ), 1 )
*
               END IF
*
            ELSE
*
*              Complex left eigenvector.
*
*               Initial solve:
*                 ((T(KI,KI)    T(KI,KI+1) )' - (WR - I* WI))*X = 0.
*                 ((T(KI+1,KI) T(KI+1,KI+1))                )
*
               IF( ABS( T( KI, KI+1 ) ).GE.ABS( T( KI+1, KI ) ) ) THEN
                  WORK( KI+N ) = WI / T( KI, KI+1 )
                  WORK( KI+1+N2 ) = ONE
               ELSE
                  WORK( KI+N ) = ONE
                  WORK( KI+1+N2 ) = -WI / T( KI+1, KI )
               END IF
               WORK( KI+1+N ) = ZERO
               WORK( KI+N2 ) = ZERO
*
*              Form right-hand side
*
               DO 190 K = KI + 2, N
                  WORK( K+N ) = -WORK( KI+N )*T( KI, K )
                  WORK( K+N2 ) = -WORK( KI+1+N2 )*T( KI+1, K )
  190          CONTINUE
*
*              Solve complex quasi-triangular system:
*              ( T(KI+2,N:KI+2,N) - (WR-i*WI) )*X = WORK1+i*WORK2
*
               VMAX = ONE
               VCRIT = BIGNUM
*
               JNXT = KI + 2
               DO 200 J = KI + 2, N
                  IF( J.LT.JNXT )
     $               GO TO 200
                  J1 = J
                  J2 = J
                  JNXT = J + 1
                  IF( J.LT.N ) THEN
                     IF( T( J+1, J ).NE.ZERO ) THEN
                        J2 = J + 1
                        JNXT = J + 2
                     END IF
                  END IF
*
                  IF( J1.EQ.J2 ) THEN
*
*                    1-by-1 diagonal block
*
*                    Scale if necessary to avoid overflow when
*                    forming the right-hand side elements.
*
                     IF( WORK( J ).GT.VCRIT ) THEN
                        REC = ONE / VMAX
                        CALL DSCAL( N-KI+1, REC, WORK( KI+N ), 1 )
                        CALL DSCAL( N-KI+1, REC, WORK( KI+N2 ), 1 )
                        VMAX = ONE
                        VCRIT = BIGNUM
                     END IF
*
                     WORK( J+N ) = WORK( J+N ) -
     $                             DDOT( J-KI-2, T( KI+2, J ), 1,
     $                             WORK( KI+2+N ), 1 )
                     WORK( J+N2 ) = WORK( J+N2 ) -
     $                              DDOT( J-KI-2, T( KI+2, J ), 1,
     $                              WORK( KI+2+N2 ), 1 )
*
*                    Solve (T(J,J)-(WR-i*WI))*(X11+i*X12)= WK+I*WK2
*
                     CALL DLALN2( .FALSE., 1, 2, SMIN, ONE, T( J, J ),
     $                            LDT, ONE, ONE, WORK( J+N ), N, WR,
     $                            -WI, X, 2, SCALE, XNORM, IERR )
*
*                    Scale if necessary
*
                     IF( SCALE.NE.ONE ) THEN
                        CALL DSCAL( N-KI+1, SCALE, WORK( KI+N ), 1 )
                        CALL DSCAL( N-KI+1, SCALE, WORK( KI+N2 ), 1 )
                     END IF
                     WORK( J+N ) = X( 1, 1 )
                     WORK( J+N2 ) = X( 1, 2 )
                     VMAX = MAX( ABS( WORK( J+N ) ),
     $                      ABS( WORK( J+N2 ) ), VMAX )
                     VCRIT = BIGNUM / VMAX
*
                  ELSE
*
*                    2-by-2 diagonal block
*
*                    Scale if necessary to avoid overflow when forming
*                    the right-hand side elements.
*
                     BETA = MAX( WORK( J ), WORK( J+1 ) )
                     IF( BETA.GT.VCRIT ) THEN
                        REC = ONE / VMAX
                        CALL DSCAL( N-KI+1, REC, WORK( KI+N ), 1 )
                        CALL DSCAL( N-KI+1, REC, WORK( KI+N2 ), 1 )
                        VMAX = ONE
                        VCRIT = BIGNUM
                     END IF
*
                     WORK( J+N ) = WORK( J+N ) -
     $                             DDOT( J-KI-2, T( KI+2, J ), 1,
     $                             WORK( KI+2+N ), 1 )
*
                     WORK( J+N2 ) = WORK( J+N2 ) -
     $                              DDOT( J-KI-2, T( KI+2, J ), 1,
     $                              WORK( KI+2+N2 ), 1 )
*
                     WORK( J+1+N ) = WORK( J+1+N ) -
     $                               DDOT( J-KI-2, T( KI+2, J+1 ), 1,
     $                               WORK( KI+2+N ), 1 )
*
                     WORK( J+1+N2 ) = WORK( J+1+N2 ) -
     $                                DDOT( J-KI-2, T( KI+2, J+1 ), 1,
     $                                WORK( KI+2+N2 ), 1 )
*
*                    Solve 2-by-2 complex linear equation
*                      ([T(j,j)   T(j,j+1)  ]'-(wr-i*wi)*I)*X = SCALE*B
*                      ([T(j+1,j) T(j+1,j+1)]             )
*
                     CALL DLALN2( .TRUE., 2, 2, SMIN, ONE, T( J, J ),
     $                            LDT, ONE, ONE, WORK( J+N ), N, WR,
     $                            -WI, X, 2, SCALE, XNORM, IERR )
*
*                    Scale if necessary
*
                     IF( SCALE.NE.ONE ) THEN
                        CALL DSCAL( N-KI+1, SCALE, WORK( KI+N ), 1 )
                        CALL DSCAL( N-KI+1, SCALE, WORK( KI+N2 ), 1 )
                     END IF
                     WORK( J+N ) = X( 1, 1 )
                     WORK( J+N2 ) = X( 1, 2 )
                     WORK( J+1+N ) = X( 2, 1 )
                     WORK( J+1+N2 ) = X( 2, 2 )
                     VMAX = MAX( ABS( X( 1, 1 ) ), ABS( X( 1, 2 ) ),
     $                      ABS( X( 2, 1 ) ), ABS( X( 2, 2 ) ), VMAX )
                     VCRIT = BIGNUM / VMAX
*
                  END IF
  200          CONTINUE
*
*              Copy the vector x or Q*x to VL and normalize.
*
  210          CONTINUE
               IF( .NOT.OVER ) THEN
                  CALL DCOPY( N-KI+1, WORK( KI+N ), 1, VL( KI, IS ), 1 )
                  CALL DCOPY( N-KI+1, WORK( KI+N2 ), 1, VL( KI, IS+1 ),
     $                        1 )
*
                  EMAX = ZERO
                  DO 220 K = KI, N
                     EMAX = MAX( EMAX, ABS( VL( K, IS ) )+
     $                      ABS( VL( K, IS+1 ) ) )
  220             CONTINUE
                  REMAX = ONE / EMAX
                  CALL DSCAL( N-KI+1, REMAX, VL( KI, IS ), 1 )
                  CALL DSCAL( N-KI+1, REMAX, VL( KI, IS+1 ), 1 )
*
                  DO 230 K = 1, KI - 1
                     VL( K, IS ) = ZERO
                     VL( K, IS+1 ) = ZERO
  230             CONTINUE
               ELSE
                  IF( KI.LT.N-1 ) THEN
                     CALL DGEMV( 'N', N, N-KI-1, ONE, VL( 1, KI+2 ),
     $                           LDVL, WORK( KI+2+N ), 1, WORK( KI+N ),
     $                           VL( 1, KI ), 1 )
                     CALL DGEMV( 'N', N, N-KI-1, ONE, VL( 1, KI+2 ),
     $                           LDVL, WORK( KI+2+N2 ), 1,
     $                           WORK( KI+1+N2 ), VL( 1, KI+1 ), 1 )
                  ELSE
                     CALL DSCAL( N, WORK( KI+N ), VL( 1, KI ), 1 )
                     CALL DSCAL( N, WORK( KI+1+N2 ), VL( 1, KI+1 ), 1 )
                  END IF
*
                  EMAX = ZERO
                  DO 240 K = 1, N
                     EMAX = MAX( EMAX, ABS( VL( K, KI ) )+
     $                      ABS( VL( K, KI+1 ) ) )
  240             CONTINUE
                  REMAX = ONE / EMAX
                  CALL DSCAL( N, REMAX, VL( 1, KI ), 1 )
                  CALL DSCAL( N, REMAX, VL( 1, KI+1 ), 1 )
*
               END IF
*
            END IF
*
            IS = IS + 1
            IF( IP.NE.0 )
     $         IS = IS + 1
  250       CONTINUE
            IF( IP.EQ.-1 )
     $         IP = 0
            IF( IP.EQ.1 )
     $         IP = -1
*
  260    CONTINUE
*
      END IF
*
      RETURN
*
*     End of DTREVC
*
      END
      SUBROUTINE DGEBAK( JOB, SIDE, N, ILO, IHI, SCALE, M, V, LDV,
     $                   INFO )
*
*  -- LAPACK routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      CHARACTER          JOB, SIDE
      INTEGER            IHI, ILO, INFO, LDV, M, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   SCALE( * ), V( LDV, * )
*     ..
*
*  Purpose
*  =======
*
*  DGEBAK forms the right or left eigenvectors of a real general matrix
*  by backward transformation on the computed eigenvectors of the
*  balanced matrix output by DGEBAL.
*
*  Arguments
*  =========
*
*  JOB     (input) CHARACTER*1
*          Specifies the type of backward transformation required:
*          = 'N', do nothing, return immediately;
*          = 'P', do backward transformation for permutation only;
*          = 'S', do backward transformation for scaling only;
*          = 'B', do backward transformations for both permutation and
*                 scaling.
*          JOB must be the same as the argument JOB supplied to DGEBAL.
*
*  SIDE    (input) CHARACTER*1
*          = 'R':  V contains right eigenvectors;
*          = 'L':  V contains left eigenvectors.
*
*  N       (input) INTEGER
*          The number of rows of the matrix V.  N >= 0.
*
*  ILO     (input) INTEGER
*  IHI     (input) INTEGER
*          The integers ILO and IHI determined by DGEBAL.
*          1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
*
*  SCALE   (input) DOUBLE PRECISION array, dimension (N)
*          Details of the permutation and scaling factors, as returned
*          by DGEBAL.
*
*  M       (input) INTEGER
*          The number of columns of the matrix V.  M >= 0.
*
*  V       (input/output) DOUBLE PRECISION array, dimension (LDV,M)
*          On entry, the matrix of right or left eigenvectors to be
*          transformed, as returned by DHSEIN or DTREVC.
*          On exit, V is overwritten by the transformed eigenvectors.
*
*  LDV     (input) INTEGER
*          The leading dimension of the array V. LDV >= max(1,N).
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE
      PARAMETER          ( ONE = 1.0D+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            LEFTV, RIGHTV
      INTEGER            I, II, K
      DOUBLE PRECISION   S
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           DSCAL, DSWAP, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     Decode and Test the input parameters
*
      RIGHTV = LSAME( SIDE, 'R' )
      LEFTV = LSAME( SIDE, 'L' )
*
      INFO = 0
      IF( .NOT.LSAME( JOB, 'N' ) .AND. .NOT.LSAME( JOB, 'P' ) .AND.
     $    .NOT.LSAME( JOB, 'S' ) .AND. .NOT.LSAME( JOB, 'B' ) ) THEN
         INFO = -1
      ELSE IF( .NOT.RIGHTV .AND. .NOT.LEFTV ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN
         INFO = -4
      ELSE IF( IHI.LT.MIN( ILO, N ) .OR. IHI.GT.N ) THEN
         INFO = -5
      ELSE IF( M.LT.0 ) THEN
         INFO = -7
      ELSE IF( LDV.LT.MAX( 1, N ) ) THEN
         INFO = -9
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DGEBAK', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
      IF( M.EQ.0 )
     $   RETURN
      IF( LSAME( JOB, 'N' ) )
     $   RETURN
*
      IF( ILO.EQ.IHI )
     $   GO TO 30
*
*     Backward balance
*
      IF( LSAME( JOB, 'S' ) .OR. LSAME( JOB, 'B' ) ) THEN
*
         IF( RIGHTV ) THEN
            DO 10 I = ILO, IHI
               S = SCALE( I )
               CALL DSCAL( M, S, V( I, 1 ), LDV )
   10       CONTINUE
         END IF
*
         IF( LEFTV ) THEN
            DO 20 I = ILO, IHI
               S = ONE / SCALE( I )
               CALL DSCAL( M, S, V( I, 1 ), LDV )
   20       CONTINUE
         END IF
*
      END IF
*
*     Backward permutation
*
*     For  I = ILO-1 step -1 until 1,
*              IHI+1 step 1 until N do --
*
   30 CONTINUE
      IF( LSAME( JOB, 'P' ) .OR. LSAME( JOB, 'B' ) ) THEN
         IF( RIGHTV ) THEN
            DO 40 II = 1, N
               I = II
               IF( I.GE.ILO .AND. I.LE.IHI )
     $            GO TO 40
               IF( I.LT.ILO )
     $            I = ILO - II
               K = SCALE( I )
               IF( K.EQ.I )
     $            GO TO 40
               CALL DSWAP( M, V( I, 1 ), LDV, V( K, 1 ), LDV )
   40       CONTINUE
         END IF
*
         IF( LEFTV ) THEN
            DO 50 II = 1, N
               I = II
               IF( I.GE.ILO .AND. I.LE.IHI )
     $            GO TO 50
               IF( I.LT.ILO )
     $            I = ILO - II
               K = SCALE( I )
               IF( K.EQ.I )
     $            GO TO 50
               CALL DSWAP( M, V( I, 1 ), LDV, V( K, 1 ), LDV )
   50       CONTINUE
         END IF
      END IF
*
      RETURN
*
*     End of DGEBAK
*
      END
      SUBROUTINE DLACPY( UPLO, M, N, A, LDA, B, LDB )
*
*  -- LAPACK auxiliary routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     February 29, 1992
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            LDA, LDB, M, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), B( LDB, * )
*     ..
*
*  Purpose
*  =======
*
*  DLACPY copies all or part of a two-dimensional matrix A to another
*  matrix B.
*
*  Arguments
*  =========
*
*  UPLO    (input) CHARACTER*1
*          Specifies the part of the matrix A to be copied to B.
*          = 'U':      Upper triangular part
*          = 'L':      Lower triangular part
*          Otherwise:  All of the matrix A
*
*  M       (input) INTEGER
*          The number of rows of the matrix A.  M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrix A.  N >= 0.
*
*  A       (input) DOUBLE PRECISION array, dimension (LDA,N)
*          The m by n matrix A.  If UPLO = 'U', only the upper triangle
*          or trapezoid is accessed; if UPLO = 'L', only the lower
*          triangle or trapezoid is accessed.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,M).
*
*  B       (output) DOUBLE PRECISION array, dimension (LDB,N)
*          On exit, B = A in the locations specified by UPLO.
*
*  LDB     (input) INTEGER
*          The leading dimension of the array B.  LDB >= max(1,M).
*
*  =====================================================================
*
*     .. Local Scalars ..
      INTEGER            I, J
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MIN
*     ..
*     .. Executable Statements ..
*
      IF( LSAME( UPLO, 'U' ) ) THEN
         DO 20 J = 1, N
            DO 10 I = 1, MIN( J, M )
               B( I, J ) = A( I, J )
   10       CONTINUE
   20    CONTINUE
      ELSE IF( LSAME( UPLO, 'L' ) ) THEN
         DO 40 J = 1, N
            DO 30 I = J, M
               B( I, J ) = A( I, J )
   30       CONTINUE
   40    CONTINUE
      ELSE
         DO 60 J = 1, N
            DO 50 I = 1, M
               B( I, J ) = A( I, J )
   50       CONTINUE
   60    CONTINUE
      END IF
      RETURN
*
*     End of DLACPY
*
      END
      SUBROUTINE DLAHRD( N, K, NB, A, LDA, TAU, T, LDT, Y, LDY )
*
*  -- LAPACK auxiliary routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     June 30, 1999
*
*     .. Scalar Arguments ..
      INTEGER            K, LDA, LDT, LDY, N, NB
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), T( LDT, NB ), TAU( NB ),
     $                   Y( LDY, NB )
*     ..
*
*  Purpose
*  =======
*
*  DLAHRD reduces the first NB columns of a real general n-by-(n-k+1)
*  matrix A so that elements below the k-th subdiagonal are zero. The
*  reduction is performed by an orthogonal similarity transformation
*  Q' * A * Q. The routine returns the matrices V and T which determine
*  Q as a block reflector I - V*T*V', and also the matrix Y = A * V * T.
*
*  This is an auxiliary routine called by DGEHRD.
*
*  Arguments
*  =========
*
*  N       (input) INTEGER
*          The order of the matrix A.
*
*  K       (input) INTEGER
*          The offset for the reduction. Elements below the k-th
*          subdiagonal in the first NB columns are reduced to zero.
*
*  NB      (input) INTEGER
*          The number of columns to be reduced.
*
*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N-K+1)
*          On entry, the n-by-(n-k+1) general matrix A.
*          On exit, the elements on and above the k-th subdiagonal in
*          the first NB columns are overwritten with the corresponding
*          elements of the reduced matrix; the elements below the k-th
*          subdiagonal, with the array TAU, represent the matrix Q as a
*          product of elementary reflectors. The other columns of A are
*          unchanged. See Further Details.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N).
*
*  TAU     (output) DOUBLE PRECISION array, dimension (NB)
*          The scalar factors of the elementary reflectors. See Further
*          Details.
*
*  T       (output) DOUBLE PRECISION array, dimension (LDT,NB)
*          The upper triangular matrix T.
*
*  LDT     (input) INTEGER
*          The leading dimension of the array T.  LDT >= NB.
*
*  Y       (output) DOUBLE PRECISION array, dimension (LDY,NB)
*          The n-by-nb matrix Y.
*
*  LDY     (input) INTEGER
*          The leading dimension of the array Y. LDY >= N.
*
*  Further Details
*  ===============
*
*  The matrix Q is represented as a product of nb elementary reflectors
*
*     Q = H(1) H(2) . . . H(nb).
*
*  Each H(i) has the form
*
*     H(i) = I - tau * v * v'
*
*  where tau is a real scalar, and v is a real vector with
*  v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in
*  A(i+k+1:n,i), and tau in TAU(i).
*
*  The elements of the vectors v together form the (n-k+1)-by-nb matrix
*  V which is needed, with T and Y, to apply the transformation to the
*  unreduced part of the matrix, using an update of the form:
*  A := (I - V*T*V') * (A - Y*V').
*
*  The contents of A on exit are illustrated by the following example
*  with n = 7, k = 3 and nb = 2:
*
*     ( a   h   a   a   a )
*     ( a   h   a   a   a )
*     ( a   h   a   a   a )
*     ( h   h   a   a   a )
*     ( v1  h   a   a   a )
*     ( v1  v2  a   a   a )
*     ( v1  v2  a   a   a )
*
*  where a denotes an element of the original matrix A, h denotes a
*  modified element of the upper Hessenberg matrix H, and vi denotes an
*  element of the vector defining H(i).
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I
      DOUBLE PRECISION   EI
*     ..
*     .. External Subroutines ..
      EXTERNAL           DAXPY, DCOPY, DGEMV, DLARFG, DSCAL, DTRMV
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MIN
*     ..
*     .. Executable Statements ..
*
*     Quick return if possible
*
      IF( N.LE.1 )
     $   RETURN
*
      DO 10 I = 1, NB
         IF( I.GT.1 ) THEN
*
*           Update A(1:n,i)
*
*           Compute i-th column of A - Y * V'
*
            CALL DGEMV( 'No transpose', N, I-1, -ONE, Y, LDY,
     $                  A( K+I-1, 1 ), LDA, ONE, A( 1, I ), 1 )
*
*           Apply I - V * T' * V' to this column (call it b) from the
*           left, using the last column of T as workspace
*
*           Let  V = ( V1 )   and   b = ( b1 )   (first I-1 rows)
*                    ( V2 )             ( b2 )
*
*           where V1 is unit lower triangular
*
*           w := V1' * b1
*
            CALL DCOPY( I-1, A( K+1, I ), 1, T( 1, NB ), 1 )
            CALL DTRMV( 'Lower', 'Transpose', 'Unit', I-1, A( K+1, 1 ),
     $                  LDA, T( 1, NB ), 1 )
*
*           w := w + V2'*b2
*
            CALL DGEMV( 'Transpose', N-K-I+1, I-1, ONE, A( K+I, 1 ),
     $                  LDA, A( K+I, I ), 1, ONE, T( 1, NB ), 1 )
*
*           w := T'*w
*
            CALL DTRMV( 'Upper', 'Transpose', 'Non-unit', I-1, T, LDT,
     $                  T( 1, NB ), 1 )
*
*           b2 := b2 - V2*w
*
            CALL DGEMV( 'No transpose', N-K-I+1, I-1, -ONE, A( K+I, 1 ),
     $                  LDA, T( 1, NB ), 1, ONE, A( K+I, I ), 1 )
*
*           b1 := b1 - V1*w
*
            CALL DTRMV( 'Lower', 'No transpose', 'Unit', I-1,
     $                  A( K+1, 1 ), LDA, T( 1, NB ), 1 )
            CALL DAXPY( I-1, -ONE, T( 1, NB ), 1, A( K+1, I ), 1 )
*
            A( K+I-1, I-1 ) = EI
         END IF
*
*        Generate the elementary reflector H(i) to annihilate
*        A(k+i+1:n,i)
*
         CALL DLARFG( N-K-I+1, A( K+I, I ), A( MIN( K+I+1, N ), I ), 1,
     $                TAU( I ) )
         EI = A( K+I, I )
         A( K+I, I ) = ONE
*
*        Compute  Y(1:n,i)
*
         CALL DGEMV( 'No transpose', N, N-K-I+1, ONE, A( 1, I+1 ), LDA,
     $               A( K+I, I ), 1, ZERO, Y( 1, I ), 1 )
         CALL DGEMV( 'Transpose', N-K-I+1, I-1, ONE, A( K+I, 1 ), LDA,
     $               A( K+I, I ), 1, ZERO, T( 1, I ), 1 )
         CALL DGEMV( 'No transpose', N, I-1, -ONE, Y, LDY, T( 1, I ), 1,
     $               ONE, Y( 1, I ), 1 )
         CALL DSCAL( N, TAU( I ), Y( 1, I ), 1 )
*
*        Compute T(1:i,i)
*
         CALL DSCAL( I-1, -TAU( I ), T( 1, I ), 1 )
         CALL DTRMV( 'Upper', 'No transpose', 'Non-unit', I-1, T, LDT,
     $               T( 1, I ), 1 )
         T( I, I ) = TAU( I )
*
   10 CONTINUE
      A( K+NB, NB ) = EI
*
      RETURN
*
*     End of DLAHRD
*
      END
      SUBROUTINE DLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI,
     $                   ILOZ, IHIZ, Z, LDZ, INFO )
*
*  -- LAPACK auxiliary routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     June 30, 1999
*
*     .. Scalar Arguments ..
      LOGICAL            WANTT, WANTZ
      INTEGER            IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   H( LDH, * ), WI( * ), WR( * ), Z( LDZ, * )
*     ..
*
*  Purpose
*  =======
*
*  DLAHQR is an auxiliary routine called by DHSEQR to update the
*  eigenvalues and Schur decomposition already computed by DHSEQR, by
*  dealing with the Hessenberg submatrix in rows and columns ILO to IHI.
*
*  Arguments
*  =========
*
*  WANTT   (input) LOGICAL
*          = .TRUE. : the full Schur form T is required;
*          = .FALSE.: only eigenvalues are required.
*
*  WANTZ   (input) LOGICAL
*          = .TRUE. : the matrix of Schur vectors Z is required;
*          = .FALSE.: Schur vectors are not required.
*
*  N       (input) INTEGER
*          The order of the matrix H.  N >= 0.
*
*  ILO     (input) INTEGER
*  IHI     (input) INTEGER
*          It is assumed that H is already upper quasi-triangular in
*          rows and columns IHI+1:N, and that H(ILO,ILO-1) = 0 (unless
*          ILO = 1). DLAHQR works primarily with the Hessenberg
*          submatrix in rows and columns ILO to IHI, but applies
*          transformations to all of H if WANTT is .TRUE..
*          1 <= ILO <= max(1,IHI); IHI <= N.
*
*  H       (input/output) DOUBLE PRECISION array, dimension (LDH,N)
*          On entry, the upper Hessenberg matrix H.
*          On exit, if WANTT is .TRUE., H is upper quasi-triangular in
*          rows and columns ILO:IHI, with any 2-by-2 diagonal blocks in
*          standard form. If WANTT is .FALSE., the contents of H are
*          unspecified on exit.
*
*  LDH     (input) INTEGER
*          The leading dimension of the array H. LDH >= max(1,N).
*
*  WR      (output) DOUBLE PRECISION array, dimension (N)
*  WI      (output) DOUBLE PRECISION array, dimension (N)
*          The real and imaginary parts, respectively, of the computed
*          eigenvalues ILO to IHI are stored in the corresponding
*          elements of WR and WI. If two eigenvalues are computed as a
*          complex conjugate pair, they are stored in consecutive
*          elements of WR and WI, say the i-th and (i+1)th, with
*          WI(i) > 0 and WI(i+1) < 0. If WANTT is .TRUE., the
*          eigenvalues are stored in the same order as on the diagonal
*          of the Schur form returned in H, with WR(i) = H(i,i), and, if
*          H(i:i+1,i:i+1) is a 2-by-2 diagonal block,
*          WI(i) = sqrt(H(i+1,i)*H(i,i+1)) and WI(i+1) = -WI(i).
*
*  ILOZ    (input) INTEGER
*  IHIZ    (input) INTEGER
*          Specify the rows of Z to which transformations must be
*          applied if WANTZ is .TRUE..
*          1 <= ILOZ <= ILO; IHI <= IHIZ <= N.
*
*  Z       (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
*          If WANTZ is .TRUE., on entry Z must contain the current
*          matrix Z of transformations accumulated by DHSEQR, and on
*          exit Z has been updated; transformations are applied only to
*          the submatrix Z(ILOZ:IHIZ,ILO:IHI).
*          If WANTZ is .FALSE., Z is not referenced.
*
*  LDZ     (input) INTEGER
*          The leading dimension of the array Z. LDZ >= max(1,N).
*
*  INFO    (output) INTEGER
*          = 0: successful exit
*          > 0: DLAHQR failed to compute all the eigenvalues ILO to IHI
*               in a total of 30*(IHI-ILO+1) iterations; if INFO = i,
*               elements i+1:ihi of WR and WI contain those eigenvalues
*               which have been successfully computed.
*
*  Further Details
*  ===============
*
*  2-96 Based on modifications by
*     David Day, Sandia National Laboratory, USA
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE, HALF
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, HALF = 0.5D0 )
      DOUBLE PRECISION   DAT1, DAT2
      PARAMETER          ( DAT1 = 0.75D+0, DAT2 = -0.4375D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, I1, I2, ITN, ITS, J, K, L, M, NH, NR, NZ
      DOUBLE PRECISION   AVE, CS, DISC, H00, H10, H11, H12, H21, H22,
     $                   H33, H33S, H43H34, H44, H44S, OVFL, S, SMLNUM,
     $                   SN, SUM, T1, T2, T3, TST1, ULP, UNFL, V1, V2,
     $                   V3
*     ..
*     .. Local Arrays ..
      DOUBLE PRECISION   V( 3 ), WORK( 1 )
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH, DLANHS
      EXTERNAL           DLAMCH, DLANHS
*     ..
*     .. External Subroutines ..
      EXTERNAL           DCOPY, DLANV2, DLARFG, DROT
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, MIN, SIGN, SQRT
*     ..
*     .. Executable Statements ..
*
      INFO = 0
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
      IF( ILO.EQ.IHI ) THEN
         WR( ILO ) = H( ILO, ILO )
         WI( ILO ) = ZERO
         RETURN
      END IF
*
      NH = IHI - ILO + 1
      NZ = IHIZ - ILOZ + 1
*
*     Set machine-dependent constants for the stopping criterion.
*     If norm(H) <= sqrt(OVFL), overflow should not occur.
*
      UNFL = DLAMCH( 'Safe minimum' )
      OVFL = ONE / UNFL
      CALL DLABAD( UNFL, OVFL )
      ULP = DLAMCH( 'Precision' )
      SMLNUM = UNFL*( NH / ULP )
*
*     I1 and I2 are the indices of the first row and last column of H
*     to which transformations must be applied. If eigenvalues only are
*     being computed, I1 and I2 are set inside the main loop.
*
      IF( WANTT ) THEN
         I1 = 1
         I2 = N
      END IF
*
*     ITN is the total number of QR iterations allowed.
*
      ITN = 30*NH
*
*     The main loop begins here. I is the loop index and decreases from
*     IHI to ILO in steps of 1 or 2. Each iteration of the loop works
*     with the active submatrix in rows and columns L to I.
*     Eigenvalues I+1 to IHI have already converged. Either L = ILO or
*     H(L,L-1) is negligible so that the matrix splits.
*
      I = IHI
   10 CONTINUE
      L = ILO
      IF( I.LT.ILO )
     $   GO TO 150
*
*     Perform QR iterations on rows and columns ILO to I until a
*     submatrix of order 1 or 2 splits off at the bottom because a
*     subdiagonal element has become negligible.
*
      DO 130 ITS = 0, ITN
*
*        Look for a single small subdiagonal element.
*
         DO 20 K = I, L + 1, -1
            TST1 = ABS( H( K-1, K-1 ) ) + ABS( H( K, K ) )
            IF( TST1.EQ.ZERO )
     $         TST1 = DLANHS( '1', I-L+1, H( L, L ), LDH, WORK )
            IF( ABS( H( K, K-1 ) ).LE.MAX( ULP*TST1, SMLNUM ) )
     $         GO TO 30
   20    CONTINUE
   30    CONTINUE
         L = K
         IF( L.GT.ILO ) THEN
*
*           H(L,L-1) is negligible
*
            H( L, L-1 ) = ZERO
         END IF
*
*        Exit from loop if a submatrix of order 1 or 2 has split off.
*
         IF( L.GE.I-1 )
     $      GO TO 140
*
*        Now the active submatrix is in rows and columns L to I. If
*        eigenvalues only are being computed, only the active submatrix
*        need be transformed.
*
         IF( .NOT.WANTT ) THEN
            I1 = L
            I2 = I
         END IF
*
         IF( ITS.EQ.10 .OR. ITS.EQ.20 ) THEN
*
*           Exceptional shift.
*
            S = ABS( H( I, I-1 ) ) + ABS( H( I-1, I-2 ) )
            H44 = DAT1*S + H( I, I )
            H33 = H44
            H43H34 = DAT2*S*S
         ELSE
*
*           Prepare to use Francis' double shift
*           (i.e. 2nd degree generalized Rayleigh quotient)
*
            H44 = H( I, I )
            H33 = H( I-1, I-1 )
            H43H34 = H( I, I-1 )*H( I-1, I )
            S = H( I-1, I-2 )*H( I-1, I-2 )
            DISC = ( H33-H44 )*HALF
            DISC = DISC*DISC + H43H34
            IF( DISC.GT.ZERO ) THEN
*
*              Real roots: use Wilkinson's shift twice
*
               DISC = SQRT( DISC )
               AVE = HALF*( H33+H44 )
               IF( ABS( H33 )-ABS( H44 ).GT.ZERO ) THEN
                  H33 = H33*H44 - H43H34
                  H44 = H33 / ( SIGN( DISC, AVE )+AVE )
               ELSE
                  H44 = SIGN( DISC, AVE ) + AVE
               END IF
               H33 = H44
               H43H34 = ZERO
            END IF
         END IF
*
*        Look for two consecutive small subdiagonal elements.
*
         DO 40 M = I - 2, L, -1
*           Determine the effect of starting the double-shift QR
*           iteration at row M, and see if this would make H(M,M-1)
*           negligible.
*
            H11 = H( M, M )
            H22 = H( M+1, M+1 )
            H21 = H( M+1, M )
            H12 = H( M, M+1 )
            H44S = H44 - H11
            H33S = H33 - H11
            V1 = ( H33S*H44S-H43H34 ) / H21 + H12
            V2 = H22 - H11 - H33S - H44S
            V3 = H( M+2, M+1 )
            S = ABS( V1 ) + ABS( V2 ) + ABS( V3 )
            V1 = V1 / S
            V2 = V2 / S
            V3 = V3 / S
            V( 1 ) = V1
            V( 2 ) = V2
            V( 3 ) = V3
            IF( M.EQ.L )
     $         GO TO 50
            H00 = H( M-1, M-1 )
            H10 = H( M, M-1 )
            TST1 = ABS( V1 )*( ABS( H00 )+ABS( H11 )+ABS( H22 ) )
            IF( ABS( H10 )*( ABS( V2 )+ABS( V3 ) ).LE.ULP*TST1 )
     $         GO TO 50
   40    CONTINUE
   50    CONTINUE
*
*        Double-shift QR step
*
         DO 120 K = M, I - 1
*
*           The first iteration of this loop determines a reflection G
*           from the vector V and applies it from left and right to H,
*           thus creating a nonzero bulge below the subdiagonal.
*
*           Each subsequent iteration determines a reflection G to
*           restore the Hessenberg form in the (K-1)th column, and thus
*           chases the bulge one step toward the bottom of the active
*           submatrix. NR is the order of G.
*
            NR = MIN( 3, I-K+1 )
            IF( K.GT.M )
     $         CALL DCOPY( NR, H( K, K-1 ), 1, V, 1 )
            CALL DLARFG( NR, V( 1 ), V( 2 ), 1, T1 )
            IF( K.GT.M ) THEN
               H( K, K-1 ) = V( 1 )
               H( K+1, K-1 ) = ZERO
               IF( K.LT.I-1 )
     $            H( K+2, K-1 ) = ZERO
            ELSE IF( M.GT.L ) THEN
               H( K, K-1 ) = -H( K, K-1 )
            END IF
            V2 = V( 2 )
            T2 = T1*V2
            IF( NR.EQ.3 ) THEN
               V3 = V( 3 )
               T3 = T1*V3
*
*              Apply G from the left to transform the rows of the matrix
*              in columns K to I2.
*
               DO 60 J = K, I2
                  SUM = H( K, J ) + V2*H( K+1, J ) + V3*H( K+2, J )
                  H( K, J ) = H( K, J ) - SUM*T1
                  H( K+1, J ) = H( K+1, J ) - SUM*T2
                  H( K+2, J ) = H( K+2, J ) - SUM*T3
   60          CONTINUE
*
*              Apply G from the right to transform the columns of the
*              matrix in rows I1 to min(K+3,I).
*
               DO 70 J = I1, MIN( K+3, I )
                  SUM = H( J, K ) + V2*H( J, K+1 ) + V3*H( J, K+2 )
                  H( J, K ) = H( J, K ) - SUM*T1
                  H( J, K+1 ) = H( J, K+1 ) - SUM*T2
                  H( J, K+2 ) = H( J, K+2 ) - SUM*T3
   70          CONTINUE
*
               IF( WANTZ ) THEN
*
*                 Accumulate transformations in the matrix Z
*
                  DO 80 J = ILOZ, IHIZ
                     SUM = Z( J, K ) + V2*Z( J, K+1 ) + V3*Z( J, K+2 )
                     Z( J, K ) = Z( J, K ) - SUM*T1
                     Z( J, K+1 ) = Z( J, K+1 ) - SUM*T2
                     Z( J, K+2 ) = Z( J, K+2 ) - SUM*T3
   80             CONTINUE
               END IF
            ELSE IF( NR.EQ.2 ) THEN
*
*              Apply G from the left to transform the rows of the matrix
*              in columns K to I2.
*
               DO 90 J = K, I2
                  SUM = H( K, J ) + V2*H( K+1, J )
                  H( K, J ) = H( K, J ) - SUM*T1
                  H( K+1, J ) = H( K+1, J ) - SUM*T2
   90          CONTINUE
*
*              Apply G from the right to transform the columns of the
*              matrix in rows I1 to min(K+3,I).
*
               DO 100 J = I1, I
                  SUM = H( J, K ) + V2*H( J, K+1 )
                  H( J, K ) = H( J, K ) - SUM*T1
                  H( J, K+1 ) = H( J, K+1 ) - SUM*T2
  100          CONTINUE
*
               IF( WANTZ ) THEN
*
*                 Accumulate transformations in the matrix Z
*
                  DO 110 J = ILOZ, IHIZ
                     SUM = Z( J, K ) + V2*Z( J, K+1 )
                     Z( J, K ) = Z( J, K ) - SUM*T1
                     Z( J, K+1 ) = Z( J, K+1 ) - SUM*T2
  110             CONTINUE
               END IF
            END IF
  120    CONTINUE
*
  130 CONTINUE
*
*     Failure to converge in remaining number of iterations
*
      INFO = I
      RETURN
*
  140 CONTINUE
*
      IF( L.EQ.I ) THEN
*
*        H(I,I-1) is negligible: one eigenvalue has converged.
*
         WR( I ) = H( I, I )
         WI( I ) = ZERO
      ELSE IF( L.EQ.I-1 ) THEN
*
*        H(I-1,I-2) is negligible: a pair of eigenvalues have converged.
*
*        Transform the 2-by-2 submatrix to standard Schur form,
*        and compute and store the eigenvalues.
*
         CALL DLANV2( H( I-1, I-1 ), H( I-1, I ), H( I, I-1 ),
     $                H( I, I ), WR( I-1 ), WI( I-1 ), WR( I ), WI( I ),
     $                CS, SN )
*
         IF( WANTT ) THEN
*
*           Apply the transformation to the rest of H.
*
            IF( I2.GT.I )
     $         CALL DROT( I2-I, H( I-1, I+1 ), LDH, H( I, I+1 ), LDH,
     $                    CS, SN )
            CALL DROT( I-I1-1, H( I1, I-1 ), 1, H( I1, I ), 1, CS, SN )
         END IF
         IF( WANTZ ) THEN
*
*           Apply the transformation to Z.
*
            CALL DROT( NZ, Z( ILOZ, I-1 ), 1, Z( ILOZ, I ), 1, CS, SN )
         END IF
      END IF
*
*     Decrement number of remaining iterations, and return to start of
*     the main loop with new value of I.
*
      ITN = ITN - ITS
      I = L - 1
      GO TO 10
*
  150 CONTINUE
      RETURN
*
*     End of DLAHQR
*
      END
      SUBROUTINE DLARFG( N, ALPHA, X, INCX, TAU )
*
*  -- LAPACK auxiliary routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      INTEGER            INCX, N
      DOUBLE PRECISION   ALPHA, TAU
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   X( * )
*     ..
*
*  Purpose
*  =======
*
*  DLARFG generates a real elementary reflector H of order n, such
*  that
*
*        H * ( alpha ) = ( beta ),   H' * H = I.
*            (   x   )   (   0  )
*
*  where alpha and beta are scalars, and x is an (n-1)-element real
*  vector. H is represented in the form
*
*        H = I - tau * ( 1 ) * ( 1 v' ) ,
*                      ( v )
*
*  where tau is a real scalar and v is a real (n-1)-element
*  vector.
*
*  If the elements of x are all zero, then tau = 0 and H is taken to be
*  the unit matrix.
*
*  Otherwise  1 <= tau <= 2.
*
*  Arguments
*  =========
*
*  N       (input) INTEGER
*          The order of the elementary reflector.
*
*  ALPHA   (input/output) DOUBLE PRECISION
*          On entry, the value alpha.
*          On exit, it is overwritten with the value beta.
*
*  X       (input/output) DOUBLE PRECISION array, dimension
*                         (1+(N-2)*abs(INCX))
*          On entry, the vector x.
*          On exit, it is overwritten with the vector v.
*
*  INCX    (input) INTEGER
*          The increment between elements of X. INCX > 0.
*
*  TAU     (output) DOUBLE PRECISION
*          The value tau.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            J, KNT
      DOUBLE PRECISION   BETA, RSAFMN, SAFMIN, XNORM
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH, DLAPY2, DNRM2
      EXTERNAL           DLAMCH, DLAPY2, DNRM2
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, SIGN
*     ..
*     .. External Subroutines ..
      EXTERNAL           DSCAL
*     ..
*     .. Executable Statements ..
*
      IF( N.LE.1 ) THEN
         TAU = ZERO
         RETURN
      END IF
*
      XNORM = DNRM2( N-1, X, INCX )
*
      IF( XNORM.EQ.ZERO ) THEN
*
*        H  =  I
*
         TAU = ZERO
      ELSE
*
*        general case
*
         BETA = -SIGN( DLAPY2( ALPHA, XNORM ), ALPHA )
         SAFMIN = DLAMCH( 'S' ) / DLAMCH( 'E' )
         IF( ABS( BETA ).LT.SAFMIN ) THEN
*
*           XNORM, BETA may be inaccurate; scale X and recompute them
*
            RSAFMN = ONE / SAFMIN
            KNT = 0
   10       CONTINUE
            KNT = KNT + 1
            CALL DSCAL( N-1, RSAFMN, X, INCX )
            BETA = BETA*RSAFMN
            ALPHA = ALPHA*RSAFMN
            IF( ABS( BETA ).LT.SAFMIN )
     $         GO TO 10
*
*           New BETA is at most 1, at least SAFMIN
*
            XNORM = DNRM2( N-1, X, INCX )
            BETA = -SIGN( DLAPY2( ALPHA, XNORM ), ALPHA )
            TAU = ( BETA-ALPHA ) / BETA
            CALL DSCAL( N-1, ONE / ( ALPHA-BETA ), X, INCX )
*
*           If ALPHA is subnormal, it may lose relative accuracy
*
            ALPHA = BETA
            DO 20 J = 1, KNT
               ALPHA = ALPHA*SAFMIN
   20       CONTINUE
         ELSE
            TAU = ( BETA-ALPHA ) / BETA
            CALL DSCAL( N-1, ONE / ( ALPHA-BETA ), X, INCX )
            ALPHA = BETA
         END IF
      END IF
*
      RETURN
*
*     End of DLARFG
*
      END
      SUBROUTINE DLARFX( SIDE, M, N, V, TAU, C, LDC, WORK )
*
*  -- LAPACK auxiliary routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     February 29, 1992
*
*     .. Scalar Arguments ..
      CHARACTER          SIDE
      INTEGER            LDC, M, N
      DOUBLE PRECISION   TAU
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   C( LDC, * ), V( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  DLARFX applies a real elementary reflector H to a real m by n
*  matrix C, from either the left or the right. H is represented in the
*  form
*
*        H = I - tau * v * v'
*
*  where tau is a real scalar and v is a real vector.
*
*  If tau = 0, then H is taken to be the unit matrix
*
*  This version uses inline code if H has order < 11.
*
*  Arguments
*  =========
*
*  SIDE    (input) CHARACTER*1
*          = 'L': form  H * C
*          = 'R': form  C * H
*
*  M       (input) INTEGER
*          The number of rows of the matrix C.
*
*  N       (input) INTEGER
*          The number of columns of the matrix C.
*
*  V       (input) DOUBLE PRECISION array, dimension (M) if SIDE = 'L'
*                                     or (N) if SIDE = 'R'
*          The vector v in the representation of H.
*
*  TAU     (input) DOUBLE PRECISION
*          The value tau in the representation of H.
*
*  C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
*          On entry, the m by n matrix C.
*          On exit, C is overwritten by the matrix H * C if SIDE = 'L',
*          or C * H if SIDE = 'R'.
*
*  LDC     (input) INTEGER
*          The leading dimension of the array C. LDA >= (1,M).
*
*  WORK    (workspace) DOUBLE PRECISION array, dimension
*                      (N) if SIDE = 'L'
*                      or (M) if SIDE = 'R'
*          WORK is not referenced if H has order < 11.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            J
      DOUBLE PRECISION   SUM, T1, T10, T2, T3, T4, T5, T6, T7, T8, T9,
     $                   V1, V10, V2, V3, V4, V5, V6, V7, V8, V9
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           DGEMV, DGER
*     ..
*     .. Executable Statements ..
*
      IF( TAU.EQ.ZERO )
     $   RETURN
      IF( LSAME( SIDE, 'L' ) ) THEN
*
*        Form  H * C, where H has order m.
*
         GO TO ( 10, 30, 50, 70, 90, 110, 130, 150,
     $           170, 190 )M
*
*        Code for general M
*
*        w := C'*v
*
         CALL DGEMV( 'Transpose', M, N, ONE, C, LDC, V, 1, ZERO, WORK,
     $               1 )
*
*        C := C - tau * v * w'
*
         CALL DGER( M, N, -TAU, V, 1, WORK, 1, C, LDC )
         GO TO 410
   10    CONTINUE
*
*        Special code for 1 x 1 Householder
*
         T1 = ONE - TAU*V( 1 )*V( 1 )
         DO 20 J = 1, N
            C( 1, J ) = T1*C( 1, J )
   20    CONTINUE
         GO TO 410
   30    CONTINUE
*
*        Special code for 2 x 2 Householder
*
         V1 = V( 1 )
         T1 = TAU*V1
         V2 = V( 2 )
         T2 = TAU*V2
         DO 40 J = 1, N
            SUM = V1*C( 1, J ) + V2*C( 2, J )
            C( 1, J ) = C( 1, J ) - SUM*T1
            C( 2, J ) = C( 2, J ) - SUM*T2
   40    CONTINUE
         GO TO 410
   50    CONTINUE
*
*        Special code for 3 x 3 Householder
*
         V1 = V( 1 )
         T1 = TAU*V1
         V2 = V( 2 )
         T2 = TAU*V2
         V3 = V( 3 )
         T3 = TAU*V3
         DO 60 J = 1, N
            SUM = V1*C( 1, J ) + V2*C( 2, J ) + V3*C( 3, J )
            C( 1, J ) = C( 1, J ) - SUM*T1
            C( 2, J ) = C( 2, J ) - SUM*T2
            C( 3, J ) = C( 3, J ) - SUM*T3
   60    CONTINUE
         GO TO 410
   70    CONTINUE
*
*        Special code for 4 x 4 Householder
*
         V1 = V( 1 )
         T1 = TAU*V1
         V2 = V( 2 )
         T2 = TAU*V2
         V3 = V( 3 )
         T3 = TAU*V3
         V4 = V( 4 )
         T4 = TAU*V4
         DO 80 J = 1, N
            SUM = V1*C( 1, J ) + V2*C( 2, J ) + V3*C( 3, J ) +
     $            V4*C( 4, J )
            C( 1, J ) = C( 1, J ) - SUM*T1
            C( 2, J ) = C( 2, J ) - SUM*T2
            C( 3, J ) = C( 3, J ) - SUM*T3
            C( 4, J ) = C( 4, J ) - SUM*T4
   80    CONTINUE
         GO TO 410
   90    CONTINUE
*
*        Special code for 5 x 5 Householder
*
         V1 = V( 1 )
         T1 = TAU*V1
         V2 = V( 2 )
         T2 = TAU*V2
         V3 = V( 3 )
         T3 = TAU*V3
         V4 = V( 4 )
         T4 = TAU*V4
         V5 = V( 5 )
         T5 = TAU*V5
         DO 100 J = 1, N
            SUM = V1*C( 1, J ) + V2*C( 2, J ) + V3*C( 3, J ) +
     $            V4*C( 4, J ) + V5*C( 5, J )
            C( 1, J ) = C( 1, J ) - SUM*T1
            C( 2, J ) = C( 2, J ) - SUM*T2
            C( 3, J ) = C( 3, J ) - SUM*T3
            C( 4, J ) = C( 4, J ) - SUM*T4
            C( 5, J ) = C( 5, J ) - SUM*T5
  100    CONTINUE
         GO TO 410
  110    CONTINUE
*
*        Special code for 6 x 6 Householder
*
         V1 = V( 1 )
         T1 = TAU*V1
         V2 = V( 2 )
         T2 = TAU*V2
         V3 = V( 3 )
         T3 = TAU*V3
         V4 = V( 4 )
         T4 = TAU*V4
         V5 = V( 5 )
         T5 = TAU*V5
         V6 = V( 6 )
         T6 = TAU*V6
         DO 120 J = 1, N
            SUM = V1*C( 1, J ) + V2*C( 2, J ) + V3*C( 3, J ) +
     $            V4*C( 4, J ) + V5*C( 5, J ) + V6*C( 6, J )
            C( 1, J ) = C( 1, J ) - SUM*T1
            C( 2, J ) = C( 2, J ) - SUM*T2
            C( 3, J ) = C( 3, J ) - SUM*T3
            C( 4, J ) = C( 4, J ) - SUM*T4
            C( 5, J ) = C( 5, J ) - SUM*T5
            C( 6, J ) = C( 6, J ) - SUM*T6
  120    CONTINUE
         GO TO 410
  130    CONTINUE
*
*        Special code for 7 x 7 Householder
*
         V1 = V( 1 )
         T1 = TAU*V1
         V2 = V( 2 )
         T2 = TAU*V2
         V3 = V( 3 )
         T3 = TAU*V3
         V4 = V( 4 )
         T4 = TAU*V4
         V5 = V( 5 )
         T5 = TAU*V5
         V6 = V( 6 )
         T6 = TAU*V6
         V7 = V( 7 )
         T7 = TAU*V7
         DO 140 J = 1, N
            SUM = V1*C( 1, J ) + V2*C( 2, J ) + V3*C( 3, J ) +
     $            V4*C( 4, J ) + V5*C( 5, J ) + V6*C( 6, J ) +
     $            V7*C( 7, J )
            C( 1, J ) = C( 1, J ) - SUM*T1
            C( 2, J ) = C( 2, J ) - SUM*T2
            C( 3, J ) = C( 3, J ) - SUM*T3
            C( 4, J ) = C( 4, J ) - SUM*T4
            C( 5, J ) = C( 5, J ) - SUM*T5
            C( 6, J ) = C( 6, J ) - SUM*T6
            C( 7, J ) = C( 7, J ) - SUM*T7
  140    CONTINUE
         GO TO 410
  150    CONTINUE
*
*        Special code for 8 x 8 Householder
*
         V1 = V( 1 )
         T1 = TAU*V1
         V2 = V( 2 )
         T2 = TAU*V2
         V3 = V( 3 )
         T3 = TAU*V3
         V4 = V( 4 )
         T4 = TAU*V4
         V5 = V( 5 )
         T5 = TAU*V5
         V6 = V( 6 )
         T6 = TAU*V6
         V7 = V( 7 )
         T7 = TAU*V7
         V8 = V( 8 )
         T8 = TAU*V8
         DO 160 J = 1, N
            SUM = V1*C( 1, J ) + V2*C( 2, J ) + V3*C( 3, J ) +
     $            V4*C( 4, J ) + V5*C( 5, J ) + V6*C( 6, J ) +
     $            V7*C( 7, J ) + V8*C( 8, J )
            C( 1, J ) = C( 1, J ) - SUM*T1
            C( 2, J ) = C( 2, J ) - SUM*T2
            C( 3, J ) = C( 3, J ) - SUM*T3
            C( 4, J ) = C( 4, J ) - SUM*T4
            C( 5, J ) = C( 5, J ) - SUM*T5
            C( 6, J ) = C( 6, J ) - SUM*T6
            C( 7, J ) = C( 7, J ) - SUM*T7
            C( 8, J ) = C( 8, J ) - SUM*T8
  160    CONTINUE
         GO TO 410
  170    CONTINUE
*
*        Special code for 9 x 9 Householder
*
         V1 = V( 1 )
         T1 = TAU*V1
         V2 = V( 2 )
         T2 = TAU*V2
         V3 = V( 3 )
         T3 = TAU*V3
         V4 = V( 4 )
         T4 = TAU*V4
         V5 = V( 5 )
         T5 = TAU*V5
         V6 = V( 6 )
         T6 = TAU*V6
         V7 = V( 7 )
         T7 = TAU*V7
         V8 = V( 8 )
         T8 = TAU*V8
         V9 = V( 9 )
         T9 = TAU*V9
         DO 180 J = 1, N
            SUM = V1*C( 1, J ) + V2*C( 2, J ) + V3*C( 3, J ) +
     $            V4*C( 4, J ) + V5*C( 5, J ) + V6*C( 6, J ) +
     $            V7*C( 7, J ) + V8*C( 8, J ) + V9*C( 9, J )
            C( 1, J ) = C( 1, J ) - SUM*T1
            C( 2, J ) = C( 2, J ) - SUM*T2
            C( 3, J ) = C( 3, J ) - SUM*T3
            C( 4, J ) = C( 4, J ) - SUM*T4
            C( 5, J ) = C( 5, J ) - SUM*T5
            C( 6, J ) = C( 6, J ) - SUM*T6
            C( 7, J ) = C( 7, J ) - SUM*T7
            C( 8, J ) = C( 8, J ) - SUM*T8
            C( 9, J ) = C( 9, J ) - SUM*T9
  180    CONTINUE
         GO TO 410
  190    CONTINUE
*
*        Special code for 10 x 10 Householder
*
         V1 = V( 1 )
         T1 = TAU*V1
         V2 = V( 2 )
         T2 = TAU*V2
         V3 = V( 3 )
         T3 = TAU*V3
         V4 = V( 4 )
         T4 = TAU*V4
         V5 = V( 5 )
         T5 = TAU*V5
         V6 = V( 6 )
         T6 = TAU*V6
         V7 = V( 7 )
         T7 = TAU*V7
         V8 = V( 8 )
         T8 = TAU*V8
         V9 = V( 9 )
         T9 = TAU*V9
         V10 = V( 10 )
         T10 = TAU*V10
         DO 200 J = 1, N
            SUM = V1*C( 1, J ) + V2*C( 2, J ) + V3*C( 3, J ) +
     $            V4*C( 4, J ) + V5*C( 5, J ) + V6*C( 6, J ) +
     $            V7*C( 7, J ) + V8*C( 8, J ) + V9*C( 9, J ) +
     $            V10*C( 10, J )
            C( 1, J ) = C( 1, J ) - SUM*T1
            C( 2, J ) = C( 2, J ) - SUM*T2
            C( 3, J ) = C( 3, J ) - SUM*T3
            C( 4, J ) = C( 4, J ) - SUM*T4
            C( 5, J ) = C( 5, J ) - SUM*T5
            C( 6, J ) = C( 6, J ) - SUM*T6
            C( 7, J ) = C( 7, J ) - SUM*T7
            C( 8, J ) = C( 8, J ) - SUM*T8
            C( 9, J ) = C( 9, J ) - SUM*T9
            C( 10, J ) = C( 10, J ) - SUM*T10
  200    CONTINUE
         GO TO 410
      ELSE
*
*        Form  C * H, where H has order n.
*
         GO TO ( 210, 230, 250, 270, 290, 310, 330, 350,
     $           370, 390 )N
*
*        Code for general N
*
*        w := C * v
*
         CALL DGEMV( 'No transpose', M, N, ONE, C, LDC, V, 1, ZERO,
     $               WORK, 1 )
*
*        C := C - tau * w * v'
*
         CALL DGER( M, N, -TAU, WORK, 1, V, 1, C, LDC )
         GO TO 410
  210    CONTINUE
*
*        Special code for 1 x 1 Householder
*
         T1 = ONE - TAU*V( 1 )*V( 1 )
         DO 220 J = 1, M
            C( J, 1 ) = T1*C( J, 1 )
  220    CONTINUE
         GO TO 410
  230    CONTINUE
*
*        Special code for 2 x 2 Householder
*
         V1 = V( 1 )
         T1 = TAU*V1
         V2 = V( 2 )
         T2 = TAU*V2
         DO 240 J = 1, M
            SUM = V1*C( J, 1 ) + V2*C( J, 2 )
            C( J, 1 ) = C( J, 1 ) - SUM*T1
            C( J, 2 ) = C( J, 2 ) - SUM*T2
  240    CONTINUE
         GO TO 410
  250    CONTINUE
*
*        Special code for 3 x 3 Householder
*
         V1 = V( 1 )
         T1 = TAU*V1
         V2 = V( 2 )
         T2 = TAU*V2
         V3 = V( 3 )
         T3 = TAU*V3
         DO 260 J = 1, M
            SUM = V1*C( J, 1 ) + V2*C( J, 2 ) + V3*C( J, 3 )
            C( J, 1 ) = C( J, 1 ) - SUM*T1
            C( J, 2 ) = C( J, 2 ) - SUM*T2
            C( J, 3 ) = C( J, 3 ) - SUM*T3
  260    CONTINUE
         GO TO 410
  270    CONTINUE
*
*        Special code for 4 x 4 Householder
*
         V1 = V( 1 )
         T1 = TAU*V1
         V2 = V( 2 )
         T2 = TAU*V2
         V3 = V( 3 )
         T3 = TAU*V3
         V4 = V( 4 )
         T4 = TAU*V4
         DO 280 J = 1, M
            SUM = V1*C( J, 1 ) + V2*C( J, 2 ) + V3*C( J, 3 ) +
     $            V4*C( J, 4 )
            C( J, 1 ) = C( J, 1 ) - SUM*T1
            C( J, 2 ) = C( J, 2 ) - SUM*T2
            C( J, 3 ) = C( J, 3 ) - SUM*T3
            C( J, 4 ) = C( J, 4 ) - SUM*T4
  280    CONTINUE
         GO TO 410
  290    CONTINUE
*
*        Special code for 5 x 5 Householder
*
         V1 = V( 1 )
         T1 = TAU*V1
         V2 = V( 2 )
         T2 = TAU*V2
         V3 = V( 3 )
         T3 = TAU*V3
         V4 = V( 4 )
         T4 = TAU*V4
         V5 = V( 5 )
         T5 = TAU*V5
         DO 300 J = 1, M
            SUM = V1*C( J, 1 ) + V2*C( J, 2 ) + V3*C( J, 3 ) +
     $            V4*C( J, 4 ) + V5*C( J, 5 )
            C( J, 1 ) = C( J, 1 ) - SUM*T1
            C( J, 2 ) = C( J, 2 ) - SUM*T2
            C( J, 3 ) = C( J, 3 ) - SUM*T3
            C( J, 4 ) = C( J, 4 ) - SUM*T4
            C( J, 5 ) = C( J, 5 ) - SUM*T5
  300    CONTINUE
         GO TO 410
  310    CONTINUE
*
*        Special code for 6 x 6 Householder
*
         V1 = V( 1 )
         T1 = TAU*V1
         V2 = V( 2 )
         T2 = TAU*V2
         V3 = V( 3 )
         T3 = TAU*V3
         V4 = V( 4 )
         T4 = TAU*V4
         V5 = V( 5 )
         T5 = TAU*V5
         V6 = V( 6 )
         T6 = TAU*V6
         DO 320 J = 1, M
            SUM = V1*C( J, 1 ) + V2*C( J, 2 ) + V3*C( J, 3 ) +
     $            V4*C( J, 4 ) + V5*C( J, 5 ) + V6*C( J, 6 )
            C( J, 1 ) = C( J, 1 ) - SUM*T1
            C( J, 2 ) = C( J, 2 ) - SUM*T2
            C( J, 3 ) = C( J, 3 ) - SUM*T3
            C( J, 4 ) = C( J, 4 ) - SUM*T4
            C( J, 5 ) = C( J, 5 ) - SUM*T5
            C( J, 6 ) = C( J, 6 ) - SUM*T6
  320    CONTINUE
         GO TO 410
  330    CONTINUE
*
*        Special code for 7 x 7 Householder
*
         V1 = V( 1 )
         T1 = TAU*V1
         V2 = V( 2 )
         T2 = TAU*V2
         V3 = V( 3 )
         T3 = TAU*V3
         V4 = V( 4 )
         T4 = TAU*V4
         V5 = V( 5 )
         T5 = TAU*V5
         V6 = V( 6 )
         T6 = TAU*V6
         V7 = V( 7 )
         T7 = TAU*V7
         DO 340 J = 1, M
            SUM = V1*C( J, 1 ) + V2*C( J, 2 ) + V3*C( J, 3 ) +
     $            V4*C( J, 4 ) + V5*C( J, 5 ) + V6*C( J, 6 ) +
     $            V7*C( J, 7 )
            C( J, 1 ) = C( J, 1 ) - SUM*T1
            C( J, 2 ) = C( J, 2 ) - SUM*T2
            C( J, 3 ) = C( J, 3 ) - SUM*T3
            C( J, 4 ) = C( J, 4 ) - SUM*T4
            C( J, 5 ) = C( J, 5 ) - SUM*T5
            C( J, 6 ) = C( J, 6 ) - SUM*T6
            C( J, 7 ) = C( J, 7 ) - SUM*T7
  340    CONTINUE
         GO TO 410
  350    CONTINUE
*
*        Special code for 8 x 8 Householder
*
         V1 = V( 1 )
         T1 = TAU*V1
         V2 = V( 2 )
         T2 = TAU*V2
         V3 = V( 3 )
         T3 = TAU*V3
         V4 = V( 4 )
         T4 = TAU*V4
         V5 = V( 5 )
         T5 = TAU*V5
         V6 = V( 6 )
         T6 = TAU*V6
         V7 = V( 7 )
         T7 = TAU*V7
         V8 = V( 8 )
         T8 = TAU*V8
         DO 360 J = 1, M
            SUM = V1*C( J, 1 ) + V2*C( J, 2 ) + V3*C( J, 3 ) +
     $            V4*C( J, 4 ) + V5*C( J, 5 ) + V6*C( J, 6 ) +
     $            V7*C( J, 7 ) + V8*C( J, 8 )
            C( J, 1 ) = C( J, 1 ) - SUM*T1
            C( J, 2 ) = C( J, 2 ) - SUM*T2
            C( J, 3 ) = C( J, 3 ) - SUM*T3
            C( J, 4 ) = C( J, 4 ) - SUM*T4
            C( J, 5 ) = C( J, 5 ) - SUM*T5
            C( J, 6 ) = C( J, 6 ) - SUM*T6
            C( J, 7 ) = C( J, 7 ) - SUM*T7
            C( J, 8 ) = C( J, 8 ) - SUM*T8
  360    CONTINUE
         GO TO 410
  370    CONTINUE
*
*        Special code for 9 x 9 Householder
*
         V1 = V( 1 )
         T1 = TAU*V1
         V2 = V( 2 )
         T2 = TAU*V2
         V3 = V( 3 )
         T3 = TAU*V3
         V4 = V( 4 )
         T4 = TAU*V4
         V5 = V( 5 )
         T5 = TAU*V5
         V6 = V( 6 )
         T6 = TAU*V6
         V7 = V( 7 )
         T7 = TAU*V7
         V8 = V( 8 )
         T8 = TAU*V8
         V9 = V( 9 )
         T9 = TAU*V9
         DO 380 J = 1, M
            SUM = V1*C( J, 1 ) + V2*C( J, 2 ) + V3*C( J, 3 ) +
     $            V4*C( J, 4 ) + V5*C( J, 5 ) + V6*C( J, 6 ) +
     $            V7*C( J, 7 ) + V8*C( J, 8 ) + V9*C( J, 9 )
            C( J, 1 ) = C( J, 1 ) - SUM*T1
            C( J, 2 ) = C( J, 2 ) - SUM*T2
            C( J, 3 ) = C( J, 3 ) - SUM*T3
            C( J, 4 ) = C( J, 4 ) - SUM*T4
            C( J, 5 ) = C( J, 5 ) - SUM*T5
            C( J, 6 ) = C( J, 6 ) - SUM*T6
            C( J, 7 ) = C( J, 7 ) - SUM*T7
            C( J, 8 ) = C( J, 8 ) - SUM*T8
            C( J, 9 ) = C( J, 9 ) - SUM*T9
  380    CONTINUE
         GO TO 410
  390    CONTINUE
*
*        Special code for 10 x 10 Householder
*
         V1 = V( 1 )
         T1 = TAU*V1
         V2 = V( 2 )
         T2 = TAU*V2
         V3 = V( 3 )
         T3 = TAU*V3
         V4 = V( 4 )
         T4 = TAU*V4
         V5 = V( 5 )
         T5 = TAU*V5
         V6 = V( 6 )
         T6 = TAU*V6
         V7 = V( 7 )
         T7 = TAU*V7
         V8 = V( 8 )
         T8 = TAU*V8
         V9 = V( 9 )
         T9 = TAU*V9
         V10 = V( 10 )
         T10 = TAU*V10
         DO 400 J = 1, M
            SUM = V1*C( J, 1 ) + V2*C( J, 2 ) + V3*C( J, 3 ) +
     $            V4*C( J, 4 ) + V5*C( J, 5 ) + V6*C( J, 6 ) +
     $            V7*C( J, 7 ) + V8*C( J, 8 ) + V9*C( J, 9 ) +
     $            V10*C( J, 10 )
            C( J, 1 ) = C( J, 1 ) - SUM*T1
            C( J, 2 ) = C( J, 2 ) - SUM*T2
            C( J, 3 ) = C( J, 3 ) - SUM*T3
            C( J, 4 ) = C( J, 4 ) - SUM*T4
            C( J, 5 ) = C( J, 5 ) - SUM*T5
            C( J, 6 ) = C( J, 6 ) - SUM*T6
            C( J, 7 ) = C( J, 7 ) - SUM*T7
            C( J, 8 ) = C( J, 8 ) - SUM*T8
            C( J, 9 ) = C( J, 9 ) - SUM*T9
            C( J, 10 ) = C( J, 10 ) - SUM*T10
  400    CONTINUE
         GO TO 410
      END IF
  410 CONTINUE
      RETURN
*
*     End of DLARFX
*
      END
      DOUBLE PRECISION FUNCTION DLANHS( NORM, N, A, LDA, WORK )
*
*  -- LAPACK auxiliary routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     October 31, 1992
*
*     .. Scalar Arguments ..
      CHARACTER          NORM
      INTEGER            LDA, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  DLANHS  returns the value of the one norm,  or the Frobenius norm, or
*  the  infinity norm,  or the  element of  largest absolute value  of a
*  Hessenberg matrix A.
*
*  Description
*  ===========
*
*  DLANHS returns the value
*
*     DLANHS = ( max(abs(A(i,j))), NORM = 'M' or 'm'
*              (
*              ( norm1(A),         NORM = '1', 'O' or 'o'
*              (
*              ( normI(A),         NORM = 'I' or 'i'
*              (
*              ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
*
*  where  norm1  denotes the  one norm of a matrix (maximum column sum),
*  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
*  normF  denotes the  Frobenius norm of a matrix (square root of sum of
*  squares).  Note that  max(abs(A(i,j)))  is not a  matrix norm.
*
*  Arguments
*  =========
*
*  NORM    (input) CHARACTER*1
*          Specifies the value to be returned in DLANHS as described
*          above.
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.  When N = 0, DLANHS is
*          set to zero.
*
*  A       (input) DOUBLE PRECISION array, dimension (LDA,N)
*          The n by n upper Hessenberg matrix A; the part of A below the
*          first sub-diagonal is not referenced.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(N,1).
*
*  WORK    (workspace) DOUBLE PRECISION array, dimension (LWORK),
*          where LWORK >= N when NORM = 'I'; otherwise, WORK is not
*          referenced.
*
* =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, J
      DOUBLE PRECISION   SCALE, SUM, VALUE
*     ..
*     .. External Subroutines ..
      EXTERNAL           DLASSQ
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, MIN, SQRT
*     ..
*     .. Executable Statements ..
*
      IF( N.EQ.0 ) THEN
         VALUE = ZERO
      ELSE IF( LSAME( NORM, 'M' ) ) THEN
*
*        Find max(abs(A(i,j))).
*
         VALUE = ZERO
         DO 20 J = 1, N
            DO 10 I = 1, MIN( N, J+1 )
               VALUE = MAX( VALUE, ABS( A( I, J ) ) )
   10       CONTINUE
   20    CONTINUE
      ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
*
*        Find norm1(A).
*
         VALUE = ZERO
         DO 40 J = 1, N
            SUM = ZERO
            DO 30 I = 1, MIN( N, J+1 )
               SUM = SUM + ABS( A( I, J ) )
   30       CONTINUE
            VALUE = MAX( VALUE, SUM )
   40    CONTINUE
      ELSE IF( LSAME( NORM, 'I' ) ) THEN
*
*        Find normI(A).
*
         DO 50 I = 1, N
            WORK( I ) = ZERO
   50    CONTINUE
         DO 70 J = 1, N
            DO 60 I = 1, MIN( N, J+1 )
               WORK( I ) = WORK( I ) + ABS( A( I, J ) )
   60       CONTINUE
   70    CONTINUE
         VALUE = ZERO
         DO 80 I = 1, N
            VALUE = MAX( VALUE, WORK( I ) )
   80    CONTINUE
      ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
*
*        Find normF(A).
*
         SCALE = ZERO
         SUM = ONE
         DO 90 J = 1, N
            CALL DLASSQ( MIN( N, J+1 ), A( 1, J ), 1, SCALE, SUM )
   90    CONTINUE
         VALUE = SCALE*SQRT( SUM )
      END IF
*
      DLANHS = VALUE
      RETURN
*
*     End of DLANHS
*
      END
      SUBROUTINE DLALN2( LTRANS, NA, NW, SMIN, CA, A, LDA, D1, D2, B,
     $                   LDB, WR, WI, X, LDX, SCALE, XNORM, INFO )
*
*  -- LAPACK auxiliary routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     October 31, 1992
*
*     .. Scalar Arguments ..
      LOGICAL            LTRANS
      INTEGER            INFO, LDA, LDB, LDX, NA, NW
      DOUBLE PRECISION   CA, D1, D2, SCALE, SMIN, WI, WR, XNORM
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), X( LDX, * )
*     ..
*
*  Purpose
*  =======
*
*  DLALN2 solves a system of the form  (ca A - w D ) X = s B
*  or (ca A' - w D) X = s B   with possible scaling ("s") and
*  perturbation of A.  (A' means A-transpose.)
*
*  A is an NA x NA real matrix, ca is a real scalar, D is an NA x NA
*  real diagonal matrix, w is a real or complex value, and X and B are
*  NA x 1 matrices -- real if w is real, complex if w is complex.  NA
*  may be 1 or 2.
*
*  If w is complex, X and B are represented as NA x 2 matrices,
*  the first column of each being the real part and the second
*  being the imaginary part.
*
*  "s" is a scaling factor (.LE. 1), computed by DLALN2, which is
*  so chosen that X can be computed without overflow.  X is further
*  scaled if necessary to assure that norm(ca A - w D)*norm(X) is less
*  than overflow.
*
*  If both singular values of (ca A - w D) are less than SMIN,
*  SMIN*identity will be used instead of (ca A - w D).  If only one
*  singular value is less than SMIN, one element of (ca A - w D) will be
*  perturbed enough to make the smallest singular value roughly SMIN.
*  If both singular values are at least SMIN, (ca A - w D) will not be
*  perturbed.  In any case, the perturbation will be at most some small
*  multiple of max( SMIN, ulp*norm(ca A - w D) ).  The singular values
*  are computed by infinity-norm approximations, and thus will only be
*  correct to a factor of 2 or so.
*
*  Note: all input quantities are assumed to be smaller than overflow
*  by a reasonable factor.  (See BIGNUM.)
*
*  Arguments
*  ==========
*
*  LTRANS  (input) LOGICAL
*          =.TRUE.:  A-transpose will be used.
*          =.FALSE.: A will be used (not transposed.)
*
*  NA      (input) INTEGER
*          The size of the matrix A.  It may (only) be 1 or 2.
*
*  NW      (input) INTEGER
*          1 if "w" is real, 2 if "w" is complex.  It may only be 1
*          or 2.
*
*  SMIN    (input) DOUBLE PRECISION
*          The desired lower bound on the singular values of A.  This
*          should be a safe distance away from underflow or overflow,
*          say, between (underflow/machine precision) and  (machine
*          precision * overflow ).  (See BIGNUM and ULP.)
*
*  CA      (input) DOUBLE PRECISION
*          The coefficient c, which A is multiplied by.
*
*  A       (input) DOUBLE PRECISION array, dimension (LDA,NA)
*          The NA x NA matrix A.
*
*  LDA     (input) INTEGER
*          The leading dimension of A.  It must be at least NA.
*
*  D1      (input) DOUBLE PRECISION
*          The 1,1 element in the diagonal matrix D.
*
*  D2      (input) DOUBLE PRECISION
*          The 2,2 element in the diagonal matrix D.  Not used if NW=1.
*
*  B       (input) DOUBLE PRECISION array, dimension (LDB,NW)
*          The NA x NW matrix B (right-hand side).  If NW=2 ("w" is
*          complex), column 1 contains the real part of B and column 2
*          contains the imaginary part.
*
*  LDB     (input) INTEGER
*          The leading dimension of B.  It must be at least NA.
*
*  WR      (input) DOUBLE PRECISION
*          The real part of the scalar "w".
*
*  WI      (input) DOUBLE PRECISION
*          The imaginary part of the scalar "w".  Not used if NW=1.
*
*  X       (output) DOUBLE PRECISION array, dimension (LDX,NW)
*          The NA x NW matrix X (unknowns), as computed by DLALN2.
*          If NW=2 ("w" is complex), on exit, column 1 will contain
*          the real part of X and column 2 will contain the imaginary
*          part.
*
*  LDX     (input) INTEGER
*          The leading dimension of X.  It must be at least NA.
*
*  SCALE   (output) DOUBLE PRECISION
*          The scale factor that B must be multiplied by to insure
*          that overflow does not occur when computing X.  Thus,
*          (ca A - w D) X  will be SCALE*B, not B (ignoring
*          perturbations of A.)  It will be at most 1.
*
*  XNORM   (output) DOUBLE PRECISION
*          The infinity-norm of X, when X is regarded as an NA x NW
*          real matrix.
*
*  INFO    (output) INTEGER
*          An error flag.  It will be set to zero if no error occurs,
*          a negative number if an argument is in error, or a positive
*          number if  ca A - w D  had to be perturbed.
*          The possible values are:
*          = 0: No error occurred, and (ca A - w D) did not have to be
*                 perturbed.
*          = 1: (ca A - w D) had to be perturbed to make its smallest
*               (or only) singular value greater than SMIN.
*          NOTE: In the interests of speed, this routine does not
*                check the inputs for errors.
*
* =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
      DOUBLE PRECISION   TWO
      PARAMETER          ( TWO = 2.0D0 )
*     ..
*     .. Local Scalars ..
      INTEGER            ICMAX, J
      DOUBLE PRECISION   BBND, BI1, BI2, BIGNUM, BNORM, BR1, BR2, CI21,
     $                   CI22, CMAX, CNORM, CR21, CR22, CSI, CSR, LI21,
     $                   LR21, SMINI, SMLNUM, TEMP, U22ABS, UI11, UI11R,
     $                   UI12, UI12S, UI22, UR11, UR11R, UR12, UR12S,
     $                   UR22, XI1, XI2, XR1, XR2
*     ..
*     .. Local Arrays ..
      LOGICAL            RSWAP( 4 ), ZSWAP( 4 )
      INTEGER            IPIVOT( 4, 4 )
      DOUBLE PRECISION   CI( 2, 2 ), CIV( 4 ), CR( 2, 2 ), CRV( 4 )
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH
      EXTERNAL           DLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           DLADIV
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX
*     ..
*     .. Equivalences ..
      EQUIVALENCE        ( CI( 1, 1 ), CIV( 1 ) ),
     $                   ( CR( 1, 1 ), CRV( 1 ) )
*     ..
*     .. Data statements ..
      DATA               ZSWAP / .FALSE., .FALSE., .TRUE., .TRUE. /
      DATA               RSWAP / .FALSE., .TRUE., .FALSE., .TRUE. /
      DATA               IPIVOT / 1, 2, 3, 4, 2, 1, 4, 3, 3, 4, 1, 2, 4,
     $                   3, 2, 1 /
*     ..
*     .. Executable Statements ..
*
*     Compute BIGNUM
*
      SMLNUM = TWO*DLAMCH( 'Safe minimum' )
      BIGNUM = ONE / SMLNUM
      SMINI = MAX( SMIN, SMLNUM )
*
*     Don't check for input errors
*
      INFO = 0
*
*     Standard Initializations
*
      SCALE = ONE
*
      IF( NA.EQ.1 ) THEN
*
*        1 x 1  (i.e., scalar) system   C X = B
*
         IF( NW.EQ.1 ) THEN
*
*           Real 1x1 system.
*
*           C = ca A - w D
*
            CSR = CA*A( 1, 1 ) - WR*D1
            CNORM = ABS( CSR )
*
*           If | C | < SMINI, use C = SMINI
*
            IF( CNORM.LT.SMINI ) THEN
               CSR = SMINI
               CNORM = SMINI
               INFO = 1
            END IF
*
*           Check scaling for  X = B / C
*
            BNORM = ABS( B( 1, 1 ) )
            IF( CNORM.LT.ONE .AND. BNORM.GT.ONE ) THEN
               IF( BNORM.GT.BIGNUM*CNORM )
     $            SCALE = ONE / BNORM
            END IF
*
*           Compute X
*
            X( 1, 1 ) = ( B( 1, 1 )*SCALE ) / CSR
            XNORM = ABS( X( 1, 1 ) )
         ELSE
*
*           Complex 1x1 system (w is complex)
*
*           C = ca A - w D
*
            CSR = CA*A( 1, 1 ) - WR*D1
            CSI = -WI*D1
            CNORM = ABS( CSR ) + ABS( CSI )
*
*           If | C | < SMINI, use C = SMINI
*
            IF( CNORM.LT.SMINI ) THEN
               CSR = SMINI
               CSI = ZERO
               CNORM = SMINI
               INFO = 1
            END IF
*
*           Check scaling for  X = B / C
*
            BNORM = ABS( B( 1, 1 ) ) + ABS( B( 1, 2 ) )
            IF( CNORM.LT.ONE .AND. BNORM.GT.ONE ) THEN
               IF( BNORM.GT.BIGNUM*CNORM )
     $            SCALE = ONE / BNORM
            END IF
*
*           Compute X
*
            CALL DLADIV( SCALE*B( 1, 1 ), SCALE*B( 1, 2 ), CSR, CSI,
     $                   X( 1, 1 ), X( 1, 2 ) )
            XNORM = ABS( X( 1, 1 ) ) + ABS( X( 1, 2 ) )
         END IF
*
      ELSE
*
*        2x2 System
*
*        Compute the real part of  C = ca A - w D  (or  ca A' - w D )
*
         CR( 1, 1 ) = CA*A( 1, 1 ) - WR*D1
         CR( 2, 2 ) = CA*A( 2, 2 ) - WR*D2
         IF( LTRANS ) THEN
            CR( 1, 2 ) = CA*A( 2, 1 )
            CR( 2, 1 ) = CA*A( 1, 2 )
         ELSE
            CR( 2, 1 ) = CA*A( 2, 1 )
            CR( 1, 2 ) = CA*A( 1, 2 )
         END IF
*
         IF( NW.EQ.1 ) THEN
*
*           Real 2x2 system  (w is real)
*
*           Find the largest element in C
*
            CMAX = ZERO
            ICMAX = 0
*
            DO 10 J = 1, 4
               IF( ABS( CRV( J ) ).GT.CMAX ) THEN
                  CMAX = ABS( CRV( J ) )
                  ICMAX = J
               END IF
   10       CONTINUE
*
*           If norm(C) < SMINI, use SMINI*identity.
*
            IF( CMAX.LT.SMINI ) THEN
               BNORM = MAX( ABS( B( 1, 1 ) ), ABS( B( 2, 1 ) ) )
               IF( SMINI.LT.ONE .AND. BNORM.GT.ONE ) THEN
                  IF( BNORM.GT.BIGNUM*SMINI )
     $               SCALE = ONE / BNORM
               END IF
               TEMP = SCALE / SMINI
               X( 1, 1 ) = TEMP*B( 1, 1 )
               X( 2, 1 ) = TEMP*B( 2, 1 )
               XNORM = TEMP*BNORM
               INFO = 1
               RETURN
            END IF
*
*           Gaussian elimination with complete pivoting.
*
            UR11 = CRV( ICMAX )
            CR21 = CRV( IPIVOT( 2, ICMAX ) )
            UR12 = CRV( IPIVOT( 3, ICMAX ) )
            CR22 = CRV( IPIVOT( 4, ICMAX ) )
            UR11R = ONE / UR11
            LR21 = UR11R*CR21
            UR22 = CR22 - UR12*LR21
*
*           If smaller pivot < SMINI, use SMINI
*
            IF( ABS( UR22 ).LT.SMINI ) THEN
               UR22 = SMINI
               INFO = 1
            END IF
            IF( RSWAP( ICMAX ) ) THEN
               BR1 = B( 2, 1 )
               BR2 = B( 1, 1 )
            ELSE
               BR1 = B( 1, 1 )
               BR2 = B( 2, 1 )
            END IF
            BR2 = BR2 - LR21*BR1
            BBND = MAX( ABS( BR1*( UR22*UR11R ) ), ABS( BR2 ) )
            IF( BBND.GT.ONE .AND. ABS( UR22 ).LT.ONE ) THEN
               IF( BBND.GE.BIGNUM*ABS( UR22 ) )
     $            SCALE = ONE / BBND
            END IF
*
            XR2 = ( BR2*SCALE ) / UR22
            XR1 = ( SCALE*BR1 )*UR11R - XR2*( UR11R*UR12 )
            IF( ZSWAP( ICMAX ) ) THEN
               X( 1, 1 ) = XR2
               X( 2, 1 ) = XR1
            ELSE
               X( 1, 1 ) = XR1
               X( 2, 1 ) = XR2
            END IF
            XNORM = MAX( ABS( XR1 ), ABS( XR2 ) )
*
*           Further scaling if  norm(A) norm(X) > overflow
*
            IF( XNORM.GT.ONE .AND. CMAX.GT.ONE ) THEN
               IF( XNORM.GT.BIGNUM / CMAX ) THEN
                  TEMP = CMAX / BIGNUM
                  X( 1, 1 ) = TEMP*X( 1, 1 )
                  X( 2, 1 ) = TEMP*X( 2, 1 )
                  XNORM = TEMP*XNORM
                  SCALE = TEMP*SCALE
               END IF
            END IF
         ELSE
*
*           Complex 2x2 system  (w is complex)
*
*           Find the largest element in C
*
            CI( 1, 1 ) = -WI*D1
            CI( 2, 1 ) = ZERO
            CI( 1, 2 ) = ZERO
            CI( 2, 2 ) = -WI*D2
            CMAX = ZERO
            ICMAX = 0
*
            DO 20 J = 1, 4
               IF( ABS( CRV( J ) )+ABS( CIV( J ) ).GT.CMAX ) THEN
                  CMAX = ABS( CRV( J ) ) + ABS( CIV( J ) )
                  ICMAX = J
               END IF
   20       CONTINUE
*
*           If norm(C) < SMINI, use SMINI*identity.
*
            IF( CMAX.LT.SMINI ) THEN
               BNORM = MAX( ABS( B( 1, 1 ) )+ABS( B( 1, 2 ) ),
     $                 ABS( B( 2, 1 ) )+ABS( B( 2, 2 ) ) )
               IF( SMINI.LT.ONE .AND. BNORM.GT.ONE ) THEN
                  IF( BNORM.GT.BIGNUM*SMINI )
     $               SCALE = ONE / BNORM
               END IF
               TEMP = SCALE / SMINI
               X( 1, 1 ) = TEMP*B( 1, 1 )
               X( 2, 1 ) = TEMP*B( 2, 1 )
               X( 1, 2 ) = TEMP*B( 1, 2 )
               X( 2, 2 ) = TEMP*B( 2, 2 )
               XNORM = TEMP*BNORM
               INFO = 1
               RETURN
            END IF
*
*           Gaussian elimination with complete pivoting.
*
            UR11 = CRV( ICMAX )
            UI11 = CIV( ICMAX )
            CR21 = CRV( IPIVOT( 2, ICMAX ) )
            CI21 = CIV( IPIVOT( 2, ICMAX ) )
            UR12 = CRV( IPIVOT( 3, ICMAX ) )
            UI12 = CIV( IPIVOT( 3, ICMAX ) )
            CR22 = CRV( IPIVOT( 4, ICMAX ) )
            CI22 = CIV( IPIVOT( 4, ICMAX ) )
            IF( ICMAX.EQ.1 .OR. ICMAX.EQ.4 ) THEN
*
*              Code when off-diagonals of pivoted C are real
*
               IF( ABS( UR11 ).GT.ABS( UI11 ) ) THEN
                  TEMP = UI11 / UR11
                  UR11R = ONE / ( UR11*( ONE+TEMP**2 ) )
                  UI11R = -TEMP*UR11R
               ELSE
                  TEMP = UR11 / UI11
                  UI11R = -ONE / ( UI11*( ONE+TEMP**2 ) )
                  UR11R = -TEMP*UI11R
               END IF
               LR21 = CR21*UR11R
               LI21 = CR21*UI11R
               UR12S = UR12*UR11R
               UI12S = UR12*UI11R
               UR22 = CR22 - UR12*LR21
               UI22 = CI22 - UR12*LI21
            ELSE
*
*              Code when diagonals of pivoted C are real
*
               UR11R = ONE / UR11
               UI11R = ZERO
               LR21 = CR21*UR11R
               LI21 = CI21*UR11R
               UR12S = UR12*UR11R
               UI12S = UI12*UR11R
               UR22 = CR22 - UR12*LR21 + UI12*LI21
               UI22 = -UR12*LI21 - UI12*LR21
            END IF
            U22ABS = ABS( UR22 ) + ABS( UI22 )
*
*           If smaller pivot < SMINI, use SMINI
*
            IF( U22ABS.LT.SMINI ) THEN
               UR22 = SMINI
               UI22 = ZERO
               INFO = 1
            END IF
            IF( RSWAP( ICMAX ) ) THEN
               BR2 = B( 1, 1 )
               BR1 = B( 2, 1 )
               BI2 = B( 1, 2 )
               BI1 = B( 2, 2 )
            ELSE
               BR1 = B( 1, 1 )
               BR2 = B( 2, 1 )
               BI1 = B( 1, 2 )
               BI2 = B( 2, 2 )
            END IF
            BR2 = BR2 - LR21*BR1 + LI21*BI1
            BI2 = BI2 - LI21*BR1 - LR21*BI1
            BBND = MAX( ( ABS( BR1 )+ABS( BI1 ) )*
     $             ( U22ABS*( ABS( UR11R )+ABS( UI11R ) ) ),
     $             ABS( BR2 )+ABS( BI2 ) )
            IF( BBND.GT.ONE .AND. U22ABS.LT.ONE ) THEN
               IF( BBND.GE.BIGNUM*U22ABS ) THEN
                  SCALE = ONE / BBND
                  BR1 = SCALE*BR1
                  BI1 = SCALE*BI1
                  BR2 = SCALE*BR2
                  BI2 = SCALE*BI2
               END IF
            END IF
*
            CALL DLADIV( BR2, BI2, UR22, UI22, XR2, XI2 )
            XR1 = UR11R*BR1 - UI11R*BI1 - UR12S*XR2 + UI12S*XI2
            XI1 = UI11R*BR1 + UR11R*BI1 - UI12S*XR2 - UR12S*XI2
            IF( ZSWAP( ICMAX ) ) THEN
               X( 1, 1 ) = XR2
               X( 2, 1 ) = XR1
               X( 1, 2 ) = XI2
               X( 2, 2 ) = XI1
            ELSE
               X( 1, 1 ) = XR1
               X( 2, 1 ) = XR2
               X( 1, 2 ) = XI1
               X( 2, 2 ) = XI2
            END IF
            XNORM = MAX( ABS( XR1 )+ABS( XI1 ), ABS( XR2 )+ABS( XI2 ) )
*
*           Further scaling if  norm(A) norm(X) > overflow
*
            IF( XNORM.GT.ONE .AND. CMAX.GT.ONE ) THEN
               IF( XNORM.GT.BIGNUM / CMAX ) THEN
                  TEMP = CMAX / BIGNUM
                  X( 1, 1 ) = TEMP*X( 1, 1 )
                  X( 2, 1 ) = TEMP*X( 2, 1 )
                  X( 1, 2 ) = TEMP*X( 1, 2 )
                  X( 2, 2 ) = TEMP*X( 2, 2 )
                  XNORM = TEMP*XNORM
                  SCALE = TEMP*SCALE
               END IF
            END IF
         END IF
      END IF
*
      RETURN
*
*     End of DLALN2
*
      END
      SUBROUTINE DLANV2( A, B, C, D, RT1R, RT1I, RT2R, RT2I, CS, SN )
*
*  -- LAPACK driver routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     June 30, 1999
*
*     .. Scalar Arguments ..
      DOUBLE PRECISION   A, B, C, CS, D, RT1I, RT1R, RT2I, RT2R, SN
*     ..
*
*  Purpose
*  =======
*
*  DLANV2 computes the Schur factorization of a real 2-by-2 nonsymmetric
*  matrix in standard form:
*
*       [ A  B ] = [ CS -SN ] [ AA  BB ] [ CS  SN ]
*       [ C  D ]   [ SN  CS ] [ CC  DD ] [-SN  CS ]
*
*  where either
*  1) CC = 0 so that AA and DD are real eigenvalues of the matrix, or
*  2) AA = DD and BB*CC < 0, so that AA + or - sqrt(BB*CC) are complex
*  conjugate eigenvalues.
*
*  Arguments
*  =========
*
*  A       (input/output) DOUBLE PRECISION
*  B       (input/output) DOUBLE PRECISION
*  C       (input/output) DOUBLE PRECISION
*  D       (input/output) DOUBLE PRECISION
*          On entry, the elements of the input matrix.
*          On exit, they are overwritten by the elements of the
*          standardised Schur form.
*
*  RT1R    (output) DOUBLE PRECISION
*  RT1I    (output) DOUBLE PRECISION
*  RT2R    (output) DOUBLE PRECISION
*  RT2I    (output) DOUBLE PRECISION
*          The real and imaginary parts of the eigenvalues. If the
*          eigenvalues are a complex conjugate pair, RT1I > 0.
*
*  CS      (output) DOUBLE PRECISION
*  SN      (output) DOUBLE PRECISION
*          Parameters of the rotation matrix.
*
*  Further Details
*  ===============
*
*  Modified by V. Sima, Research Institute for Informatics, Bucharest,
*  Romania, to reduce the risk of cancellation errors,
*  when computing real eigenvalues, and to ensure, if possible, that
*  abs(RT1R) >= abs(RT2R).
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, HALF, ONE
      PARAMETER          ( ZERO = 0.0D+0, HALF = 0.5D+0, ONE = 1.0D+0 )
      DOUBLE PRECISION   MULTPL
      PARAMETER          ( MULTPL = 4.0D+0 )
*     ..
*     .. Local Scalars ..
      DOUBLE PRECISION   AA, BB, BCMAX, BCMIS, CC, CS1, DD, EPS, P, SAB,
     $                   SAC, SCALE, SIGMA, SN1, TAU, TEMP, Z
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH, DLAPY2
      EXTERNAL           DLAMCH, DLAPY2
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, MIN, SIGN, SQRT
*     ..
*     .. Executable Statements ..
*
      EPS = DLAMCH( 'P' )
      IF( C.EQ.ZERO ) THEN
         CS = ONE
         SN = ZERO
         GO TO 10
*
      ELSE IF( B.EQ.ZERO ) THEN
*
*        Swap rows and columns
*
         CS = ZERO
         SN = ONE
         TEMP = D
         D = A
         A = TEMP
         B = -C
         C = ZERO
         GO TO 10
      ELSE IF( ( A-D ).EQ.ZERO .AND. SIGN( ONE, B ).NE.SIGN( ONE, C ) )
     $          THEN
         CS = ONE
         SN = ZERO
         GO TO 10
      ELSE
*
         TEMP = A - D
         P = HALF*TEMP
         BCMAX = MAX( ABS( B ), ABS( C ) )
         BCMIS = MIN( ABS( B ), ABS( C ) )*SIGN( ONE, B )*SIGN( ONE, C )
         SCALE = MAX( ABS( P ), BCMAX )
         Z = ( P / SCALE )*P + ( BCMAX / SCALE )*BCMIS
*
*        If Z is of the order of the machine accuracy, postpone the
*        decision on the nature of eigenvalues
*
         IF( Z.GE.MULTPL*EPS ) THEN
*
*           Real eigenvalues. Compute A and D.
*
            Z = P + SIGN( SQRT( SCALE )*SQRT( Z ), P )
            A = D + Z
            D = D - ( BCMAX / Z )*BCMIS
*
*           Compute B and the rotation matrix
*
            TAU = DLAPY2( C, Z )
            CS = Z / TAU
            SN = C / TAU
            B = B - C
            C = ZERO
         ELSE
*
*           Complex eigenvalues, or real (almost) equal eigenvalues.
*           Make diagonal elements equal.
*
            SIGMA = B + C
            TAU = DLAPY2( SIGMA, TEMP )
            CS = SQRT( HALF*( ONE+ABS( SIGMA ) / TAU ) )
            SN = -( P / ( TAU*CS ) )*SIGN( ONE, SIGMA )
*
*           Compute [ AA  BB ] = [ A  B ] [ CS -SN ]
*                   [ CC  DD ]   [ C  D ] [ SN  CS ]
*
            AA = A*CS + B*SN
            BB = -A*SN + B*CS
            CC = C*CS + D*SN
            DD = -C*SN + D*CS
*
*           Compute [ A  B ] = [ CS  SN ] [ AA  BB ]
*                   [ C  D ]   [-SN  CS ] [ CC  DD ]
*
            A = AA*CS + CC*SN
            B = BB*CS + DD*SN
            C = -AA*SN + CC*CS
            D = -BB*SN + DD*CS
*
            TEMP = HALF*( A+D )
            A = TEMP
            D = TEMP
*
            IF( C.NE.ZERO ) THEN
               IF( B.NE.ZERO ) THEN
                  IF( SIGN( ONE, B ).EQ.SIGN( ONE, C ) ) THEN
*
*                    Real eigenvalues: reduce to upper triangular form
*
                     SAB = SQRT( ABS( B ) )
                     SAC = SQRT( ABS( C ) )
                     P = SIGN( SAB*SAC, C )
                     TAU = ONE / SQRT( ABS( B+C ) )
                     A = TEMP + P
                     D = TEMP - P
                     B = B - C
                     C = ZERO
                     CS1 = SAB*TAU
                     SN1 = SAC*TAU
                     TEMP = CS*CS1 - SN*SN1
                     SN = CS*SN1 + SN*CS1
                     CS = TEMP
                  END IF
               ELSE
                  B = -C
                  C = ZERO
                  TEMP = CS
                  CS = -SN
                  SN = TEMP
               END IF
            END IF
         END IF
*
      END IF
*
   10 CONTINUE
*
*     Store eigenvalues in (RT1R,RT1I) and (RT2R,RT2I).
*
      RT1R = A
      RT2R = D
      IF( C.EQ.ZERO ) THEN
         RT1I = ZERO
         RT2I = ZERO
      ELSE
         RT1I = SQRT( ABS( B ) )*SQRT( ABS( C ) )
         RT2I = -RT1I
      END IF
      RETURN
*
*     End of DLANV2
*
      END
      SUBROUTINE DLADIV( A, B, C, D, P, Q )
*
*  -- LAPACK auxiliary routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     October 31, 1992
*
*     .. Scalar Arguments ..
      DOUBLE PRECISION   A, B, C, D, P, Q
*     ..
*
*  Purpose
*  =======
*
*  DLADIV performs complex division in  real arithmetic
*
*                        a + i*b
*             p + i*q = ---------
*                        c + i*d
*
*  The algorithm is due to Robert L. Smith and can be found
*  in D. Knuth, The art of Computer Programming, Vol.2, p.195
*
*  Arguments
*  =========
*
*  A       (input) DOUBLE PRECISION
*  B       (input) DOUBLE PRECISION
*  C       (input) DOUBLE PRECISION
*  D       (input) DOUBLE PRECISION
*          The scalars a, b, c, and d in the above expression.
*
*  P       (output) DOUBLE PRECISION
*  Q       (output) DOUBLE PRECISION
*          The scalars p and q in the above expression.
*
*  =====================================================================
*
*     .. Local Scalars ..
      DOUBLE PRECISION   E, F
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS
*     ..
*     .. Executable Statements ..
*
      IF( ABS( D ).LT.ABS( C ) ) THEN
         E = D / C
         F = C + D*E
         P = ( A+B*E ) / F
         Q = ( B-A*E ) / F
      ELSE
         E = C / D
         F = D + C*E
         P = ( B+A*E ) / F
         Q = ( -A+B*E ) / F
      END IF
*
      RETURN
*
*     End of DLADIV
*
      END

      SUBROUTINE DORGHR( N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO )
*
*  -- LAPACK routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     June 30, 1999
*
*     .. Scalar Arguments ..
      INTEGER            IHI, ILO, INFO, LDA, LWORK, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  DORGHR generates a real orthogonal matrix Q which is defined as the
*  product of IHI-ILO elementary reflectors of order N, as returned by
*  DGEHRD:
*
*  Q = H(ilo) H(ilo+1) . . . H(ihi-1).
*
*  Arguments
*  =========
*
*  N       (input) INTEGER
*          The order of the matrix Q. N >= 0.
*
*  ILO     (input) INTEGER
*  IHI     (input) INTEGER
*          ILO and IHI must have the same values as in the previous call
*          of DGEHRD. Q is equal to the unit matrix except in the
*          submatrix Q(ilo+1:ihi,ilo+1:ihi).
*          1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
*
*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
*          On entry, the vectors which define the elementary reflectors,
*          as returned by DGEHRD.
*          On exit, the N-by-N orthogonal matrix Q.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A. LDA >= max(1,N).
*
*  TAU     (input) DOUBLE PRECISION array, dimension (N-1)
*          TAU(i) must contain the scalar factor of the elementary
*          reflector H(i), as returned by DGEHRD.
*
*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK. LWORK >= IHI-ILO.
*          For optimum performance LWORK >= (IHI-ILO)*NB, where NB is
*          the optimal blocksize.
*
*          If LWORK = -1, then a workspace query is assumed; the routine
*          only calculates the optimal size of the WORK array, returns
*          this value as the first entry of the WORK array, and no error
*          message related to LWORK is issued by XERBLA.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            LQUERY
      INTEGER            I, IINFO, J, LWKOPT, NB, NH
*     ..
*     .. External Subroutines ..
      EXTERNAL           DORGQR, XERBLA
*     ..
*     .. External Functions ..
      INTEGER            ILAENV
      EXTERNAL           ILAENV
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments
*
      INFO = 0
      NH = IHI - ILO
      LQUERY = ( LWORK.EQ.-1 )
      IF( N.LT.0 ) THEN
         INFO = -1
      ELSE IF( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN
         INFO = -2
      ELSE IF( IHI.LT.MIN( ILO, N ) .OR. IHI.GT.N ) THEN
         INFO = -3
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -5
      ELSE IF( LWORK.LT.MAX( 1, NH ) .AND. .NOT.LQUERY ) THEN
         INFO = -8
      END IF
*
      IF( INFO.EQ.0 ) THEN
         NB = ILAENV( 1, 'DORGQR', ' ', NH, NH, NH, -1 )
         LWKOPT = MAX( 1, NH )*NB
         WORK( 1 ) = LWKOPT
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DORGHR', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 ) THEN
         WORK( 1 ) = 1
         RETURN
      END IF
*
*     Shift the vectors which define the elementary reflectors one
*     column to the right, and set the first ilo and the last n-ihi
*     rows and columns to those of the unit matrix
*
      DO 40 J = IHI, ILO + 1, -1
         DO 10 I = 1, J - 1
            A( I, J ) = ZERO
   10    CONTINUE
         DO 20 I = J + 1, IHI
            A( I, J ) = A( I, J-1 )
   20    CONTINUE
         DO 30 I = IHI + 1, N
            A( I, J ) = ZERO
   30    CONTINUE
   40 CONTINUE
      DO 60 J = 1, ILO
         DO 50 I = 1, N
            A( I, J ) = ZERO
   50    CONTINUE
         A( J, J ) = ONE
   60 CONTINUE
      DO 80 J = IHI + 1, N
         DO 70 I = 1, N
            A( I, J ) = ZERO
   70    CONTINUE
         A( J, J ) = ONE
   80 CONTINUE
*
      IF( NH.GT.0 ) THEN
*
*        Generate Q(ilo+1:ihi,ilo+1:ihi)
*
         CALL DORGQR( NH, NH, NH, A( ILO+1, ILO+1 ), LDA, TAU( ILO ),
     $                WORK, LWORK, IINFO )
      END IF
      WORK( 1 ) = LWKOPT
      RETURN
*
*     End of DORGHR
*
      END

      SUBROUTINE DLARFB( SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV,
     $                   T, LDT, C, LDC, WORK, LDWORK )
*
*  -- LAPACK auxiliary routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     February 29, 1992
*
*     .. Scalar Arguments ..
      CHARACTER          DIRECT, SIDE, STOREV, TRANS
      INTEGER            K, LDC, LDT, LDV, LDWORK, M, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   C( LDC, * ), T( LDT, * ), V( LDV, * ),
     $                   WORK( LDWORK, * )
*     ..
*
*  Purpose
*  =======
*
*  DLARFB applies a real block reflector H or its transpose H' to a
*  real m by n matrix C, from either the left or the right.
*
*  Arguments
*  =========
*
*  SIDE    (input) CHARACTER*1
*          = 'L': apply H or H' from the Left
*          = 'R': apply H or H' from the Right
*
*  TRANS   (input) CHARACTER*1
*          = 'N': apply H (No transpose)
*          = 'T': apply H' (Transpose)
*
*  DIRECT  (input) CHARACTER*1
*          Indicates how H is formed from a product of elementary
*          reflectors
*          = 'F': H = H(1) H(2) . . . H(k) (Forward)
*          = 'B': H = H(k) . . . H(2) H(1) (Backward)
*
*  STOREV  (input) CHARACTER*1
*          Indicates how the vectors which define the elementary
*          reflectors are stored:
*          = 'C': Columnwise
*          = 'R': Rowwise
*
*  M       (input) INTEGER
*          The number of rows of the matrix C.
*
*  N       (input) INTEGER
*          The number of columns of the matrix C.
*
*  K       (input) INTEGER
*          The order of the matrix T (= the number of elementary
*          reflectors whose product defines the block reflector).
*
*  V       (input) DOUBLE PRECISION array, dimension
*                                (LDV,K) if STOREV = 'C'
*                                (LDV,M) if STOREV = 'R' and SIDE = 'L'
*                                (LDV,N) if STOREV = 'R' and SIDE = 'R'
*          The matrix V. See further details.
*
*  LDV     (input) INTEGER
*          The leading dimension of the array V.
*          If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M);
*          if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N);
*          if STOREV = 'R', LDV >= K.
*
*  T       (input) DOUBLE PRECISION array, dimension (LDT,K)
*          The triangular k by k matrix T in the representation of the
*          block reflector.
*
*  LDT     (input) INTEGER
*          The leading dimension of the array T. LDT >= K.
*
*  C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
*          On entry, the m by n matrix C.
*          On exit, C is overwritten by H*C or H'*C or C*H or C*H'.
*
*  LDC     (input) INTEGER
*          The leading dimension of the array C. LDA >= max(1,M).
*
*  WORK    (workspace) DOUBLE PRECISION array, dimension (LDWORK,K)
*
*  LDWORK  (input) INTEGER
*          The leading dimension of the array WORK.
*          If SIDE = 'L', LDWORK >= max(1,N);
*          if SIDE = 'R', LDWORK >= max(1,M).
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE
      PARAMETER          ( ONE = 1.0D+0 )
*     ..
*     .. Local Scalars ..
      CHARACTER          TRANST
      INTEGER            I, J
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           DCOPY, DGEMM, DTRMM
*     ..
*     .. Executable Statements ..
*
*     Quick return if possible
*
      IF( M.LE.0 .OR. N.LE.0 )
     $   RETURN
*
      IF( LSAME( TRANS, 'N' ) ) THEN
         TRANST = 'T'
      ELSE
         TRANST = 'N'
      END IF
*
      IF( LSAME( STOREV, 'C' ) ) THEN
*
         IF( LSAME( DIRECT, 'F' ) ) THEN
*
*           Let  V =  ( V1 )    (first K rows)
*                     ( V2 )
*           where  V1  is unit lower triangular.
*
            IF( LSAME( SIDE, 'L' ) ) THEN
*
*              Form  H * C  or  H' * C  where  C = ( C1 )
*                                                  ( C2 )
*
*              W := C' * V  =  (C1'*V1 + C2'*V2)  (stored in WORK)
*
*              W := C1'
*
               DO 10 J = 1, K
                  CALL DCOPY( N, C( J, 1 ), LDC, WORK( 1, J ), 1 )
   10          CONTINUE
*
*              W := W * V1
*
               CALL DTRMM( 'Right', 'Lower', 'No transpose', 'Unit', N,
     $                     K, ONE, V, LDV, WORK, LDWORK )
               IF( M.GT.K ) THEN
*
*                 W := W + C2'*V2
*
                  CALL DGEMM( 'Transpose', 'No transpose', N, K, M-K,
     $                        ONE, C( K+1, 1 ), LDC, V( K+1, 1 ), LDV,
     $                        ONE, WORK, LDWORK )
               END IF
*
*              W := W * T'  or  W * T
*
               CALL DTRMM( 'Right', 'Upper', TRANST, 'Non-unit', N, K,
     $                     ONE, T, LDT, WORK, LDWORK )
*
*              C := C - V * W'
*
               IF( M.GT.K ) THEN
*
*                 C2 := C2 - V2 * W'
*
                  CALL DGEMM( 'No transpose', 'Transpose', M-K, N, K,
     $                        -ONE, V( K+1, 1 ), LDV, WORK, LDWORK, ONE,
     $                        C( K+1, 1 ), LDC )
               END IF
*
*              W := W * V1'
*
               CALL DTRMM( 'Right', 'Lower', 'Transpose', 'Unit', N, K,
     $                     ONE, V, LDV, WORK, LDWORK )
*
*              C1 := C1 - W'
*
               DO 30 J = 1, K
                  DO 20 I = 1, N
                     C( J, I ) = C( J, I ) - WORK( I, J )
   20             CONTINUE
   30          CONTINUE
*
            ELSE IF( LSAME( SIDE, 'R' ) ) THEN
*
*              Form  C * H  or  C * H'  where  C = ( C1  C2 )
*
*              W := C * V  =  (C1*V1 + C2*V2)  (stored in WORK)
*
*              W := C1
*
               DO 40 J = 1, K
                  CALL DCOPY( M, C( 1, J ), 1, WORK( 1, J ), 1 )
   40          CONTINUE
*
*              W := W * V1
*
               CALL DTRMM( 'Right', 'Lower', 'No transpose', 'Unit', M,
     $                     K, ONE, V, LDV, WORK, LDWORK )
               IF( N.GT.K ) THEN
*
*                 W := W + C2 * V2
*
                  CALL DGEMM( 'No transpose', 'No transpose', M, K, N-K,
     $                        ONE, C( 1, K+1 ), LDC, V( K+1, 1 ), LDV,
     $                        ONE, WORK, LDWORK )
               END IF
*
*              W := W * T  or  W * T'
*
               CALL DTRMM( 'Right', 'Upper', TRANS, 'Non-unit', M, K,
     $                     ONE, T, LDT, WORK, LDWORK )
*
*              C := C - W * V'
*
               IF( N.GT.K ) THEN
*
*                 C2 := C2 - W * V2'
*
                  CALL DGEMM( 'No transpose', 'Transpose', M, N-K, K,
     $                        -ONE, WORK, LDWORK, V( K+1, 1 ), LDV, ONE,
     $                        C( 1, K+1 ), LDC )
               END IF
*
*              W := W * V1'
*
               CALL DTRMM( 'Right', 'Lower', 'Transpose', 'Unit', M, K,
     $                     ONE, V, LDV, WORK, LDWORK )
*
*              C1 := C1 - W
*
               DO 60 J = 1, K
                  DO 50 I = 1, M
                     C( I, J ) = C( I, J ) - WORK( I, J )
   50             CONTINUE
   60          CONTINUE
            END IF
*
         ELSE
*
*           Let  V =  ( V1 )
*                     ( V2 )    (last K rows)
*           where  V2  is unit upper triangular.
*
            IF( LSAME( SIDE, 'L' ) ) THEN
*
*              Form  H * C  or  H' * C  where  C = ( C1 )
*                                                  ( C2 )
*
*              W := C' * V  =  (C1'*V1 + C2'*V2)  (stored in WORK)
*
*              W := C2'
*
               DO 70 J = 1, K
                  CALL DCOPY( N, C( M-K+J, 1 ), LDC, WORK( 1, J ), 1 )
   70          CONTINUE
*
*              W := W * V2
*
               CALL DTRMM( 'Right', 'Upper', 'No transpose', 'Unit', N,
     $                     K, ONE, V( M-K+1, 1 ), LDV, WORK, LDWORK )
               IF( M.GT.K ) THEN
*
*                 W := W + C1'*V1
*
                  CALL DGEMM( 'Transpose', 'No transpose', N, K, M-K,
     $                        ONE, C, LDC, V, LDV, ONE, WORK, LDWORK )
               END IF
*
*              W := W * T'  or  W * T
*
               CALL DTRMM( 'Right', 'Lower', TRANST, 'Non-unit', N, K,
     $                     ONE, T, LDT, WORK, LDWORK )
*
*              C := C - V * W'
*
               IF( M.GT.K ) THEN
*
*                 C1 := C1 - V1 * W'
*
                  CALL DGEMM( 'No transpose', 'Transpose', M-K, N, K,
     $                        -ONE, V, LDV, WORK, LDWORK, ONE, C, LDC )
               END IF
*
*              W := W * V2'
*
               CALL DTRMM( 'Right', 'Upper', 'Transpose', 'Unit', N, K,
     $                     ONE, V( M-K+1, 1 ), LDV, WORK, LDWORK )
*
*              C2 := C2 - W'
*
               DO 90 J = 1, K
                  DO 80 I = 1, N
                     C( M-K+J, I ) = C( M-K+J, I ) - WORK( I, J )
   80             CONTINUE
   90          CONTINUE
*
            ELSE IF( LSAME( SIDE, 'R' ) ) THEN
*
*              Form  C * H  or  C * H'  where  C = ( C1  C2 )
*
*              W := C * V  =  (C1*V1 + C2*V2)  (stored in WORK)
*
*              W := C2
*
               DO 100 J = 1, K
                  CALL DCOPY( M, C( 1, N-K+J ), 1, WORK( 1, J ), 1 )
  100          CONTINUE
*
*              W := W * V2
*
               CALL DTRMM( 'Right', 'Upper', 'No transpose', 'Unit', M,
     $                     K, ONE, V( N-K+1, 1 ), LDV, WORK, LDWORK )
               IF( N.GT.K ) THEN
*
*                 W := W + C1 * V1
*
                  CALL DGEMM( 'No transpose', 'No transpose', M, K, N-K,
     $                        ONE, C, LDC, V, LDV, ONE, WORK, LDWORK )
               END IF
*
*              W := W * T  or  W * T'
*
               CALL DTRMM( 'Right', 'Lower', TRANS, 'Non-unit', M, K,
     $                     ONE, T, LDT, WORK, LDWORK )
*
*              C := C - W * V'
*
               IF( N.GT.K ) THEN
*
*                 C1 := C1 - W * V1'
*
                  CALL DGEMM( 'No transpose', 'Transpose', M, N-K, K,
     $                        -ONE, WORK, LDWORK, V, LDV, ONE, C, LDC )
               END IF
*
*              W := W * V2'
*
               CALL DTRMM( 'Right', 'Upper', 'Transpose', 'Unit', M, K,
     $                     ONE, V( N-K+1, 1 ), LDV, WORK, LDWORK )
*
*              C2 := C2 - W
*
               DO 120 J = 1, K
                  DO 110 I = 1, M
                     C( I, N-K+J ) = C( I, N-K+J ) - WORK( I, J )
  110             CONTINUE
  120          CONTINUE
            END IF
         END IF
*
      ELSE IF( LSAME( STOREV, 'R' ) ) THEN
*
         IF( LSAME( DIRECT, 'F' ) ) THEN
*
*           Let  V =  ( V1  V2 )    (V1: first K columns)
*           where  V1  is unit upper triangular.
*
            IF( LSAME( SIDE, 'L' ) ) THEN
*
*              Form  H * C  or  H' * C  where  C = ( C1 )
*                                                  ( C2 )
*
*              W := C' * V'  =  (C1'*V1' + C2'*V2') (stored in WORK)
*
*              W := C1'
*
               DO 130 J = 1, K
                  CALL DCOPY( N, C( J, 1 ), LDC, WORK( 1, J ), 1 )
  130          CONTINUE
*
*              W := W * V1'
*
               CALL DTRMM( 'Right', 'Upper', 'Transpose', 'Unit', N, K,
     $                     ONE, V, LDV, WORK, LDWORK )
               IF( M.GT.K ) THEN
*
*                 W := W + C2'*V2'
*
                  CALL DGEMM( 'Transpose', 'Transpose', N, K, M-K, ONE,
     $                        C( K+1, 1 ), LDC, V( 1, K+1 ), LDV, ONE,
     $                        WORK, LDWORK )
               END IF
*
*              W := W * T'  or  W * T
*
               CALL DTRMM( 'Right', 'Upper', TRANST, 'Non-unit', N, K,
     $                     ONE, T, LDT, WORK, LDWORK )
*
*              C := C - V' * W'
*
               IF( M.GT.K ) THEN
*
*                 C2 := C2 - V2' * W'
*
                  CALL DGEMM( 'Transpose', 'Transpose', M-K, N, K, -ONE,
     $                        V( 1, K+1 ), LDV, WORK, LDWORK, ONE,
     $                        C( K+1, 1 ), LDC )
               END IF
*
*              W := W * V1
*
               CALL DTRMM( 'Right', 'Upper', 'No transpose', 'Unit', N,
     $                     K, ONE, V, LDV, WORK, LDWORK )
*
*              C1 := C1 - W'
*
               DO 150 J = 1, K
                  DO 140 I = 1, N
                     C( J, I ) = C( J, I ) - WORK( I, J )
  140             CONTINUE
  150          CONTINUE
*
            ELSE IF( LSAME( SIDE, 'R' ) ) THEN
*
*              Form  C * H  or  C * H'  where  C = ( C1  C2 )
*
*              W := C * V'  =  (C1*V1' + C2*V2')  (stored in WORK)
*
*              W := C1
*
               DO 160 J = 1, K
                  CALL DCOPY( M, C( 1, J ), 1, WORK( 1, J ), 1 )
  160          CONTINUE
*
*              W := W * V1'
*
               CALL DTRMM( 'Right', 'Upper', 'Transpose', 'Unit', M, K,
     $                     ONE, V, LDV, WORK, LDWORK )
               IF( N.GT.K ) THEN
*
*                 W := W + C2 * V2'
*
                  CALL DGEMM( 'No transpose', 'Transpose', M, K, N-K,
     $                        ONE, C( 1, K+1 ), LDC, V( 1, K+1 ), LDV,
     $                        ONE, WORK, LDWORK )
               END IF
*
*              W := W * T  or  W * T'
*
               CALL DTRMM( 'Right', 'Upper', TRANS, 'Non-unit', M, K,
     $                     ONE, T, LDT, WORK, LDWORK )
*
*              C := C - W * V
*
               IF( N.GT.K ) THEN
*
*                 C2 := C2 - W * V2
*
                  CALL DGEMM( 'No transpose', 'No transpose', M, N-K, K,
     $                        -ONE, WORK, LDWORK, V( 1, K+1 ), LDV, ONE,
     $                        C( 1, K+1 ), LDC )
               END IF
*
*              W := W * V1
*
               CALL DTRMM( 'Right', 'Upper', 'No transpose', 'Unit', M,
     $                     K, ONE, V, LDV, WORK, LDWORK )
*
*              C1 := C1 - W
*
               DO 180 J = 1, K
                  DO 170 I = 1, M
                     C( I, J ) = C( I, J ) - WORK( I, J )
  170             CONTINUE
  180          CONTINUE
*
            END IF
*
         ELSE
*
*           Let  V =  ( V1  V2 )    (V2: last K columns)
*           where  V2  is unit lower triangular.
*
            IF( LSAME( SIDE, 'L' ) ) THEN
*
*              Form  H * C  or  H' * C  where  C = ( C1 )
*                                                  ( C2 )
*
*              W := C' * V'  =  (C1'*V1' + C2'*V2') (stored in WORK)
*
*              W := C2'
*
               DO 190 J = 1, K
                  CALL DCOPY( N, C( M-K+J, 1 ), LDC, WORK( 1, J ), 1 )
  190          CONTINUE
*
*              W := W * V2'
*
               CALL DTRMM( 'Right', 'Lower', 'Transpose', 'Unit', N, K,
     $                     ONE, V( 1, M-K+1 ), LDV, WORK, LDWORK )
               IF( M.GT.K ) THEN
*
*                 W := W + C1'*V1'
*
                  CALL DGEMM( 'Transpose', 'Transpose', N, K, M-K, ONE,
     $                        C, LDC, V, LDV, ONE, WORK, LDWORK )
               END IF
*
*              W := W * T'  or  W * T
*
               CALL DTRMM( 'Right', 'Lower', TRANST, 'Non-unit', N, K,
     $                     ONE, T, LDT, WORK, LDWORK )
*
*              C := C - V' * W'
*
               IF( M.GT.K ) THEN
*
*                 C1 := C1 - V1' * W'
*
                  CALL DGEMM( 'Transpose', 'Transpose', M-K, N, K, -ONE,
     $                        V, LDV, WORK, LDWORK, ONE, C, LDC )
               END IF
*
*              W := W * V2
*
               CALL DTRMM( 'Right', 'Lower', 'No transpose', 'Unit', N,
     $                     K, ONE, V( 1, M-K+1 ), LDV, WORK, LDWORK )
*
*              C2 := C2 - W'
*
               DO 210 J = 1, K
                  DO 200 I = 1, N
                     C( M-K+J, I ) = C( M-K+J, I ) - WORK( I, J )
  200             CONTINUE
  210          CONTINUE
*
            ELSE IF( LSAME( SIDE, 'R' ) ) THEN
*
*              Form  C * H  or  C * H'  where  C = ( C1  C2 )
*
*              W := C * V'  =  (C1*V1' + C2*V2')  (stored in WORK)
*
*              W := C2
*
               DO 220 J = 1, K
                  CALL DCOPY( M, C( 1, N-K+J ), 1, WORK( 1, J ), 1 )
  220          CONTINUE
*
*              W := W * V2'
*
               CALL DTRMM( 'Right', 'Lower', 'Transpose', 'Unit', M, K,
     $                     ONE, V( 1, N-K+1 ), LDV, WORK, LDWORK )
               IF( N.GT.K ) THEN
*
*                 W := W + C1 * V1'
*
                  CALL DGEMM( 'No transpose', 'Transpose', M, K, N-K,
     $                        ONE, C, LDC, V, LDV, ONE, WORK, LDWORK )
               END IF
*
*              W := W * T  or  W * T'
*
               CALL DTRMM( 'Right', 'Lower', TRANS, 'Non-unit', M, K,
     $                     ONE, T, LDT, WORK, LDWORK )
*
*              C := C - W * V
*
               IF( N.GT.K ) THEN
*
*                 C1 := C1 - W * V1
*
                  CALL DGEMM( 'No transpose', 'No transpose', M, N-K, K,
     $                        -ONE, WORK, LDWORK, V, LDV, ONE, C, LDC )
               END IF
*
*              W := W * V2
*
               CALL DTRMM( 'Right', 'Lower', 'No transpose', 'Unit', M,
     $                     K, ONE, V( 1, N-K+1 ), LDV, WORK, LDWORK )
*
*              C1 := C1 - W
*
               DO 240 J = 1, K
                  DO 230 I = 1, M
                     C( I, N-K+J ) = C( I, N-K+J ) - WORK( I, J )
  230             CONTINUE
  240          CONTINUE
*
            END IF
*
         END IF
      END IF
*
      RETURN
*
*     End of DLARFB
*
      END
      SUBROUTINE DGEHD2( N, ILO, IHI, A, LDA, TAU, WORK, INFO )
*
*  -- LAPACK routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     October 31, 1992
*
*     .. Scalar Arguments ..
      INTEGER            IHI, ILO, INFO, LDA, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  DGEHD2 reduces a real general matrix A to upper Hessenberg form H by
*  an orthogonal similarity transformation:  Q' * A * Q = H .
*
*  Arguments
*  =========
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  ILO     (input) INTEGER
*  IHI     (input) INTEGER
*          It is assumed that A is already upper triangular in rows
*          and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
*          set by a previous call to DGEBAL; otherwise they should be
*          set to 1 and N respectively. See Further Details.
*          1 <= ILO <= IHI <= max(1,N).
*
*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
*          On entry, the n by n general matrix to be reduced.
*          On exit, the upper triangle and the first subdiagonal of A
*          are overwritten with the upper Hessenberg matrix H, and the
*          elements below the first subdiagonal, with the array TAU,
*          represent the orthogonal matrix Q as a product of elementary
*          reflectors. See Further Details.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N).
*
*  TAU     (output) DOUBLE PRECISION array, dimension (N-1)
*          The scalar factors of the elementary reflectors (see Further
*          Details).
*
*  WORK    (workspace) DOUBLE PRECISION array, dimension (N)
*
*  INFO    (output) INTEGER
*          = 0:  successful exit.
*          < 0:  if INFO = -i, the i-th argument had an illegal value.
*
*  Further Details
*  ===============
*
*  The matrix Q is represented as a product of (ihi-ilo) elementary
*  reflectors
*
*     Q = H(ilo) H(ilo+1) . . . H(ihi-1).
*
*  Each H(i) has the form
*
*     H(i) = I - tau * v * v'
*
*  where tau is a real scalar, and v is a real vector with
*  v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on
*  exit in A(i+2:ihi,i), and tau in TAU(i).
*
*  The contents of A are illustrated by the following example, with
*  n = 7, ilo = 2 and ihi = 6:
*
*  on entry,                        on exit,
*
*  ( a   a   a   a   a   a   a )    (  a   a   h   h   h   h   a )
*  (     a   a   a   a   a   a )    (      a   h   h   h   h   a )
*  (     a   a   a   a   a   a )    (      h   h   h   h   h   h )
*  (     a   a   a   a   a   a )    (      v2  h   h   h   h   h )
*  (     a   a   a   a   a   a )    (      v2  v3  h   h   h   h )
*  (     a   a   a   a   a   a )    (      v2  v3  v4  h   h   h )
*  (                         a )    (                          a )
*
*  where a denotes an element of the original matrix A, h denotes a
*  modified element of the upper Hessenberg matrix H, and vi denotes an
*  element of the vector defining H(i).
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE
      PARAMETER          ( ONE = 1.0D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I
      DOUBLE PRECISION   AII
*     ..
*     .. External Subroutines ..
      EXTERNAL           DLARF, DLARFG, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters
*
      INFO = 0
      IF( N.LT.0 ) THEN
         INFO = -1
      ELSE IF( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN
         INFO = -2
      ELSE IF( IHI.LT.MIN( ILO, N ) .OR. IHI.GT.N ) THEN
         INFO = -3
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -5
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DGEHD2', -INFO )
         RETURN
      END IF
*
      DO 10 I = ILO, IHI - 1
*
*        Compute elementary reflector H(i) to annihilate A(i+2:ihi,i)
*
         CALL DLARFG( IHI-I, A( I+1, I ), A( MIN( I+2, N ), I ), 1,
     $                TAU( I ) )
         AII = A( I+1, I )
         A( I+1, I ) = ONE
*
*        Apply H(i) to A(1:ihi,i+1:ihi) from the right
*
         CALL DLARF( 'Right', IHI, IHI-I, A( I+1, I ), 1, TAU( I ),
     $               A( 1, I+1 ), LDA, WORK )
*
*        Apply H(i) to A(i+1:ihi,i+1:n) from the left
*
         CALL DLARF( 'Left', IHI-I, N-I, A( I+1, I ), 1, TAU( I ),
     $               A( I+1, I+1 ), LDA, WORK )
*
         A( I+1, I ) = AII
   10 CONTINUE
*
      RETURN
*
*     End of DGEHD2
*
      END
      SUBROUTINE DORGQR( M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
*
*  -- LAPACK routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     June 30, 1999
*
*     .. Scalar Arguments ..
      INTEGER            INFO, K, LDA, LWORK, M, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  DORGQR generates an M-by-N real matrix Q with orthonormal columns,
*  which is defined as the first N columns of a product of K elementary
*  reflectors of order M
*
*        Q  =  H(1) H(2) . . . H(k)
*
*  as returned by DGEQRF.
*
*  Arguments
*  =========
*
*  M       (input) INTEGER
*          The number of rows of the matrix Q. M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrix Q. M >= N >= 0.
*
*  K       (input) INTEGER
*          The number of elementary reflectors whose product defines the
*          matrix Q. N >= K >= 0.
*
*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
*          On entry, the i-th column must contain the vector which
*          defines the elementary reflector H(i), for i = 1,2,...,k, as
*          returned by DGEQRF in the first k columns of its array
*          argument A.
*          On exit, the M-by-N matrix Q.
*
*  LDA     (input) INTEGER
*          The first dimension of the array A. LDA >= max(1,M).
*
*  TAU     (input) DOUBLE PRECISION array, dimension (K)
*          TAU(i) must contain the scalar factor of the elementary
*          reflector H(i), as returned by DGEQRF.
*
*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK. LWORK >= max(1,N).
*          For optimum performance LWORK >= N*NB, where NB is the
*          optimal blocksize.
*
*          If LWORK = -1, then a workspace query is assumed; the routine
*          only calculates the optimal size of the WORK array, returns
*          this value as the first entry of the WORK array, and no error
*          message related to LWORK is issued by XERBLA.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument has an illegal value
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO
      PARAMETER          ( ZERO = 0.0D+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            LQUERY
      INTEGER            I, IB, IINFO, IWS, J, KI, KK, L, LDWORK,
     $                   LWKOPT, NB, NBMIN, NX
*     ..
*     .. External Subroutines ..
      EXTERNAL           DLARFB, DLARFT, DORG2R, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
*     ..
*     .. External Functions ..
      INTEGER            ILAENV
      EXTERNAL           ILAENV
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments
*
      INFO = 0
      NB = ILAENV( 1, 'DORGQR', ' ', M, N, K, -1 )
      LWKOPT = MAX( 1, N )*NB
      WORK( 1 ) = LWKOPT
      LQUERY = ( LWORK.EQ.-1 )
      IF( M.LT.0 ) THEN
         INFO = -1
      ELSE IF( N.LT.0 .OR. N.GT.M ) THEN
         INFO = -2
      ELSE IF( K.LT.0 .OR. K.GT.N ) THEN
         INFO = -3
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
         INFO = -5
      ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
         INFO = -8
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DORGQR', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.LE.0 ) THEN
         WORK( 1 ) = 1
         RETURN
      END IF
*
      NBMIN = 2
      NX = 0
      IWS = N
      IF( NB.GT.1 .AND. NB.LT.K ) THEN
*
*        Determine when to cross over from blocked to unblocked code.
*
         NX = MAX( 0, ILAENV( 3, 'DORGQR', ' ', M, N, K, -1 ) )
         IF( NX.LT.K ) THEN
*
*           Determine if workspace is large enough for blocked code.
*
            LDWORK = N
            IWS = LDWORK*NB
            IF( LWORK.LT.IWS ) THEN
*
*              Not enough workspace to use optimal NB:  reduce NB and
*              determine the minimum value of NB.
*
               NB = LWORK / LDWORK
               NBMIN = MAX( 2, ILAENV( 2, 'DORGQR', ' ', M, N, K, -1 ) )
            END IF
         END IF
      END IF
*
      IF( NB.GE.NBMIN .AND. NB.LT.K .AND. NX.LT.K ) THEN
*
*        Use blocked code after the last block.
*        The first kk columns are handled by the block method.
*
         KI = ( ( K-NX-1 ) / NB )*NB
         KK = MIN( K, KI+NB )
*
*        Set A(1:kk,kk+1:n) to zero.
*
         DO 20 J = KK + 1, N
            DO 10 I = 1, KK
               A( I, J ) = ZERO
   10       CONTINUE
   20    CONTINUE
      ELSE
         KK = 0
      END IF
*
*     Use unblocked code for the last or only block.
*
      IF( KK.LT.N )
     $   CALL DORG2R( M-KK, N-KK, K-KK, A( KK+1, KK+1 ), LDA,
     $                TAU( KK+1 ), WORK, IINFO )
*
      IF( KK.GT.0 ) THEN
*
*        Use blocked code
*
         DO 50 I = KI + 1, 1, -NB
            IB = MIN( NB, K-I+1 )
            IF( I+IB.LE.N ) THEN
*
*              Form the triangular factor of the block reflector
*              H = H(i) H(i+1) . . . H(i+ib-1)
*
               CALL DLARFT( 'Forward', 'Columnwise', M-I+1, IB,
     $                      A( I, I ), LDA, TAU( I ), WORK, LDWORK )
*
*              Apply H to A(i:m,i+ib:n) from the left
*
               CALL DLARFB( 'Left', 'No transpose', 'Forward',
     $                      'Columnwise', M-I+1, N-I-IB+1, IB,
     $                      A( I, I ), LDA, WORK, LDWORK, A( I, I+IB ),
     $                      LDA, WORK( IB+1 ), LDWORK )
            END IF
*
*           Apply H to rows i:m of current block
*
            CALL DORG2R( M-I+1, IB, IB, A( I, I ), LDA, TAU( I ), WORK,
     $                   IINFO )
*
*           Set rows 1:i-1 of current block to zero
*
            DO 40 J = I, I + IB - 1
               DO 30 L = 1, I - 1
                  A( L, J ) = ZERO
   30          CONTINUE
   40       CONTINUE
   50    CONTINUE
      END IF
*
      WORK( 1 ) = IWS
      RETURN
*
*     End of DORGQR
*
      END
      SUBROUTINE DORG2R( M, N, K, A, LDA, TAU, WORK, INFO )
*
*  -- LAPACK routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     February 29, 1992
*
*     .. Scalar Arguments ..
      INTEGER            INFO, K, LDA, M, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  DORG2R generates an m by n real matrix Q with orthonormal columns,
*  which is defined as the first n columns of a product of k elementary
*  reflectors of order m
*
*        Q  =  H(1) H(2) . . . H(k)
*
*  as returned by DGEQRF.
*
*  Arguments
*  =========
*
*  M       (input) INTEGER
*          The number of rows of the matrix Q. M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrix Q. M >= N >= 0.
*
*  K       (input) INTEGER
*          The number of elementary reflectors whose product defines the
*          matrix Q. N >= K >= 0.
*
*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
*          On entry, the i-th column must contain the vector which
*          defines the elementary reflector H(i), for i = 1,2,...,k, as
*          returned by DGEQRF in the first k columns of its array
*          argument A.
*          On exit, the m-by-n matrix Q.
*
*  LDA     (input) INTEGER
*          The first dimension of the array A. LDA >= max(1,M).
*
*  TAU     (input) DOUBLE PRECISION array, dimension (K)
*          TAU(i) must contain the scalar factor of the elementary
*          reflector H(i), as returned by DGEQRF.
*
*  WORK    (workspace) DOUBLE PRECISION array, dimension (N)
*
*  INFO    (output) INTEGER
*          = 0: successful exit
*          < 0: if INFO = -i, the i-th argument has an illegal value
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, J, L
*     ..
*     .. External Subroutines ..
      EXTERNAL           DLARF, DSCAL, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments
*
      INFO = 0
      IF( M.LT.0 ) THEN
         INFO = -1
      ELSE IF( N.LT.0 .OR. N.GT.M ) THEN
         INFO = -2
      ELSE IF( K.LT.0 .OR. K.GT.N ) THEN
         INFO = -3
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
         INFO = -5
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DORG2R', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.LE.0 )
     $   RETURN
*
*     Initialise columns k+1:n to columns of the unit matrix
*
      DO 20 J = K + 1, N
         DO 10 L = 1, M
            A( L, J ) = ZERO
   10    CONTINUE
         A( J, J ) = ONE
   20 CONTINUE
*
      DO 40 I = K, 1, -1
*
*        Apply H(i) to A(i:m,i:n) from the left
*
         IF( I.LT.N ) THEN
            A( I, I ) = ONE
            CALL DLARF( 'Left', M-I+1, N-I, A( I, I ), 1, TAU( I ),
     $                  A( I, I+1 ), LDA, WORK )
         END IF
         IF( I.LT.M )
     $      CALL DSCAL( M-I, -TAU( I ), A( I+1, I ), 1 )
         A( I, I ) = ONE - TAU( I )
*
*        Set A(1:i-1,i) to zero
*
         DO 30 L = 1, I - 1
            A( L, I ) = ZERO
   30    CONTINUE
   40 CONTINUE
      RETURN
*
*     End of DORG2R
*
      END
      SUBROUTINE DLARF( SIDE, M, N, V, INCV, TAU, C, LDC, WORK )
*
*  -- LAPACK auxiliary routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     February 29, 1992
*
*     .. Scalar Arguments ..
      CHARACTER          SIDE
      INTEGER            INCV, LDC, M, N
      DOUBLE PRECISION   TAU
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   C( LDC, * ), V( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  DLARF applies a real elementary reflector H to a real m by n matrix
*  C, from either the left or the right. H is represented in the form
*
*        H = I - tau * v * v'
*
*  where tau is a real scalar and v is a real vector.
*
*  If tau = 0, then H is taken to be the unit matrix.
*
*  Arguments
*  =========
*
*  SIDE    (input) CHARACTER*1
*          = 'L': form  H * C
*          = 'R': form  C * H
*
*  M       (input) INTEGER
*          The number of rows of the matrix C.
*
*  N       (input) INTEGER
*          The number of columns of the matrix C.
*
*  V       (input) DOUBLE PRECISION array, dimension
*                     (1 + (M-1)*abs(INCV)) if SIDE = 'L'
*                  or (1 + (N-1)*abs(INCV)) if SIDE = 'R'
*          The vector v in the representation of H. V is not used if
*          TAU = 0.
*
*  INCV    (input) INTEGER
*          The increment between elements of v. INCV <> 0.
*
*  TAU     (input) DOUBLE PRECISION
*          The value tau in the representation of H.
*
*  C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
*          On entry, the m by n matrix C.
*          On exit, C is overwritten by the matrix H * C if SIDE = 'L',
*          or C * H if SIDE = 'R'.
*
*  LDC     (input) INTEGER
*          The leading dimension of the array C. LDC >= max(1,M).
*
*  WORK    (workspace) DOUBLE PRECISION array, dimension
*                         (N) if SIDE = 'L'
*                      or (M) if SIDE = 'R'
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
*     ..
*     .. External Subroutines ..
      EXTERNAL           DGEMV, DGER
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. Executable Statements ..
*
      IF( LSAME( SIDE, 'L' ) ) THEN
*
*        Form  H * C
*
         IF( TAU.NE.ZERO ) THEN
*
*           w := C' * v
*
            CALL DGEMV( 'Transpose', M, N, ONE, C, LDC, V, INCV, ZERO,
     $                  WORK, 1 )
*
*           C := C - v * w'
*
            CALL DGER( M, N, -TAU, V, INCV, WORK, 1, C, LDC )
         END IF
      ELSE
*
*        Form  C * H
*
         IF( TAU.NE.ZERO ) THEN
*
*           w := C * v
*
            CALL DGEMV( 'No transpose', M, N, ONE, C, LDC, V, INCV,
     $                  ZERO, WORK, 1 )
*
*           C := C - w * v'
*
            CALL DGER( M, N, -TAU, WORK, 1, V, INCV, C, LDC )
         END IF
      END IF
      RETURN
*
*     End of DLARF
*
      END
      SUBROUTINE DLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
*
*  -- LAPACK auxiliary routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     February 29, 1992
*
*     .. Scalar Arguments ..
      CHARACTER          DIRECT, STOREV
      INTEGER            K, LDT, LDV, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   T( LDT, * ), TAU( * ), V( LDV, * )
*     ..
*
*  Purpose
*  =======
*
*  DLARFT forms the triangular factor T of a real block reflector H
*  of order n, which is defined as a product of k elementary reflectors.
*
*  If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
*
*  If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
*
*  If STOREV = 'C', the vector which defines the elementary reflector
*  H(i) is stored in the i-th column of the array V, and
*
*     H  =  I - V * T * V'
*
*  If STOREV = 'R', the vector which defines the elementary reflector
*  H(i) is stored in the i-th row of the array V, and
*
*     H  =  I - V' * T * V
*
*  Arguments
*  =========
*
*  DIRECT  (input) CHARACTER*1
*          Specifies the order in which the elementary reflectors are
*          multiplied to form the block reflector:
*          = 'F': H = H(1) H(2) . . . H(k) (Forward)
*          = 'B': H = H(k) . . . H(2) H(1) (Backward)
*
*  STOREV  (input) CHARACTER*1
*          Specifies how the vectors which define the elementary
*          reflectors are stored (see also Further Details):
*          = 'C': columnwise
*          = 'R': rowwise
*
*  N       (input) INTEGER
*          The order of the block reflector H. N >= 0.
*
*  K       (input) INTEGER
*          The order of the triangular factor T (= the number of
*          elementary reflectors). K >= 1.
*
*  V       (input/output) DOUBLE PRECISION array, dimension
*                               (LDV,K) if STOREV = 'C'
*                               (LDV,N) if STOREV = 'R'
*          The matrix V. See further details.
*
*  LDV     (input) INTEGER
*          The leading dimension of the array V.
*          If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.
*
*  TAU     (input) DOUBLE PRECISION array, dimension (K)
*          TAU(i) must contain the scalar factor of the elementary
*          reflector H(i).
*
*  T       (output) DOUBLE PRECISION array, dimension (LDT,K)
*          The k by k triangular factor T of the block reflector.
*          If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is
*          lower triangular. The rest of the array is not used.
*
*  LDT     (input) INTEGER
*          The leading dimension of the array T. LDT >= K.
*
*  Further Details
*  ===============
*
*  The shape of the matrix V and the storage of the vectors which define
*  the H(i) is best illustrated by the following example with n = 5 and
*  k = 3. The elements equal to 1 are not stored; the corresponding
*  array elements are modified but restored on exit. The rest of the
*  array is not used.
*
*  DIRECT = 'F' and STOREV = 'C':         DIRECT = 'F' and STOREV = 'R':
*
*               V = (  1       )                 V = (  1 v1 v1 v1 v1 )
*                   ( v1  1    )                     (     1 v2 v2 v2 )
*                   ( v1 v2  1 )                     (        1 v3 v3 )
*                   ( v1 v2 v3 )
*                   ( v1 v2 v3 )
*
*  DIRECT = 'B' and STOREV = 'C':         DIRECT = 'B' and STOREV = 'R':
*
*               V = ( v1 v2 v3 )                 V = ( v1 v1  1       )
*                   ( v1 v2 v3 )                     ( v2 v2 v2  1    )
*                   (  1 v2 v3 )                     ( v3 v3 v3 v3  1 )
*                   (     1 v3 )
*                   (        1 )
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, J
      DOUBLE PRECISION   VII
*     ..
*     .. External Subroutines ..
      EXTERNAL           DGEMV, DTRMV
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. Executable Statements ..
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
      IF( LSAME( DIRECT, 'F' ) ) THEN
         DO 20 I = 1, K
            IF( TAU( I ).EQ.ZERO ) THEN
*
*              H(i)  =  I
*
               DO 10 J = 1, I
                  T( J, I ) = ZERO
   10          CONTINUE
            ELSE
*
*              general case
*
               VII = V( I, I )
               V( I, I ) = ONE
               IF( LSAME( STOREV, 'C' ) ) THEN
*
*                 T(1:i-1,i) := - tau(i) * V(i:n,1:i-1)' * V(i:n,i)
*
                  CALL DGEMV( 'Transpose', N-I+1, I-1, -TAU( I ),
     $                        V( I, 1 ), LDV, V( I, I ), 1, ZERO,
     $                        T( 1, I ), 1 )
               ELSE
*
*                 T(1:i-1,i) := - tau(i) * V(1:i-1,i:n) * V(i,i:n)'
*
                  CALL DGEMV( 'No transpose', I-1, N-I+1, -TAU( I ),
     $                        V( 1, I ), LDV, V( I, I ), LDV, ZERO,
     $                        T( 1, I ), 1 )
               END IF
               V( I, I ) = VII
*
*              T(1:i-1,i) := T(1:i-1,1:i-1) * T(1:i-1,i)
*
               CALL DTRMV( 'Upper', 'No transpose', 'Non-unit', I-1, T,
     $                     LDT, T( 1, I ), 1 )
               T( I, I ) = TAU( I )
            END IF
   20    CONTINUE
      ELSE
         DO 40 I = K, 1, -1
            IF( TAU( I ).EQ.ZERO ) THEN
*
*              H(i)  =  I
*
               DO 30 J = I, K
                  T( J, I ) = ZERO
   30          CONTINUE
            ELSE
*
*              general case
*
               IF( I.LT.K ) THEN
                  IF( LSAME( STOREV, 'C' ) ) THEN
                     VII = V( N-K+I, I )
                     V( N-K+I, I ) = ONE
*
*                    T(i+1:k,i) :=
*                            - tau(i) * V(1:n-k+i,i+1:k)' * V(1:n-k+i,i)
*
                     CALL DGEMV( 'Transpose', N-K+I, K-I, -TAU( I ),
     $                           V( 1, I+1 ), LDV, V( 1, I ), 1, ZERO,
     $                           T( I+1, I ), 1 )
                     V( N-K+I, I ) = VII
                  ELSE
                     VII = V( I, N-K+I )
                     V( I, N-K+I ) = ONE
*
*                    T(i+1:k,i) :=
*                            - tau(i) * V(i+1:k,1:n-k+i) * V(i,1:n-k+i)'
*
                     CALL DGEMV( 'No transpose', K-I, N-K+I, -TAU( I ),
     $                           V( I+1, 1 ), LDV, V( I, 1 ), LDV, ZERO,
     $                           T( I+1, I ), 1 )
                     V( I, N-K+I ) = VII
                  END IF
*
*                 T(i+1:k,i) := T(i+1:k,i+1:k) * T(i+1:k,i)
*
                  CALL DTRMV( 'Lower', 'No transpose', 'Non-unit', K-I,
     $                        T( I+1, I+1 ), LDT, T( I+1, I ), 1 )
               END IF
               T( I, I ) = TAU( I )
            END IF
   40    CONTINUE
      END IF
      RETURN
*
*     End of DLARFT
*
      END


^ permalink raw reply	[flat|nested] 7+ messages in thread

end of thread, other threads:[~2007-12-17 21:24 UTC | newest]

Thread overview: 7+ messages (download: mbox.gz / follow: Atom feed)
-- links below jump to the message on this page --
2007-12-14 22:30 HIRLAM and -ftree-loop-linear Toon Moene
2007-12-15 22:55 ` Sebastian Pop
2007-12-16 14:15   ` Toon Moene
2007-12-16 14:33 ` Dorit Nuzman
2007-12-16 17:17   ` Toon Moene
2007-12-17 21:24   ` Toon Moene
2007-12-17 22:45     ` Toon Moene

This is a public inbox, see mirroring instructions
for how to clone and mirror all data and code used for this inbox;
as well as URLs for read-only IMAP folder(s) and NNTP newsgroup(s).