public inbox for gdb-patches@sourceware.org
 help / color / mirror / Atom feed
From: Pedro Alves <pedro@palves.net>
To: gdb-patches@sourceware.org
Subject: [PATCH 04/31] Step over clone syscall w/ breakpoint, TARGET_WAITKIND_THREAD_CLONED
Date: Mon, 12 Dec 2022 20:30:34 +0000	[thread overview]
Message-ID: <20221212203101.1034916-5-pedro@palves.net> (raw)
In-Reply-To: <20221212203101.1034916-1-pedro@palves.net>

(A good chunk of the problem statement in the commit log below is
Andrew's, adjusted for a different solution, and for covering
displaced stepping too.)

This commit addresses bugs gdb/19675 and gdb/27830, which are about
stepping over a breakpoint set at a clone syscall instruction, one is
about displaced stepping, and the other about in-line stepping.

Currently, when a new thread is created through a clone syscall, GDB
sets the new thread running.  With 'continue' this makes sense
(assuming no schedlock):

 - all-stop mode, user issues 'continue', all threads are set running,
   a newly created thread should also be set running.

 - non-stop mode, user issues 'continue', other pre-existing threads
   are not affected, but as the new thread is (sort-of) a child of the
   thread the user asked to run, it makes sense that the new threads
   should be created in the running state.

Similarly, if we are stopped at the clone syscall, and there's no
software breakpoint at this address, then the current behaviour is
fine:

 - all-stop mode, user issues 'stepi', stepping will be done in place
   (as there's no breakpoint to step over).  While stepping the thread
   of interest all the other threads will be allowed to continue.  A
   newly created thread will be set running, and then stopped once the
   thread of interest has completed its step.

 - non-stop mode, user issues 'stepi', stepping will be done in place
   (as there's no breakpoint to step over).  Other threads might be
   running or stopped, but as with the continue case above, the new
   thread will be created running.  The only possible issue here is
   that the new thread will be left running after the initial thread
   has completed its stepi.  The user would need to manually select
   the thread and interrupt it, this might not be what the user
   expects.  However, this is not something this commit tries to
   change.

The problem then is what happens when we try to step over a clone
syscall if there is a breakpoint at the syscall address.

- For both all-stop and non-stop modes, with in-line stepping:

   + user issues 'stepi',
   + [non-stop mode only] GDB stops all threads.  In all-stop mode all
     threads are already stopped.
   + GDB removes s/w breakpoint at syscall address,
   + GDB single steps just the thread of interest, all other threads
     are left stopped,
   + New thread is created running,
   + Initial thread completes its step,
   + [non-stop mode only] GDB resumes all threads that it previously
     stopped.

There are two problems in the in-line stepping scenario above:

  1. The new thread might pass through the same code that the initial
     thread is in (i.e. the clone syscall code), in which case it will
     fail to hit the breakpoint in clone as this was removed so the
     first thread can single step,

  2. The new thread might trigger some other stop event before the
     initial thread reports its step completion.  If this happens we
     end up triggering an assertion as GDB assumes that only the
     thread being stepped should stop.  The assert looks like this:

     infrun.c:5899: internal-error: int finish_step_over(execution_control_state*): Assertion `ecs->event_thread->control.trap_expected' failed.

- For both all-stop and non-stop modes, with displaced stepping:

   + user issues 'stepi',
   + GDB starts the displaced step, moves thread's PC to the
     out-of-line scratch pad, maybe adjusts registers,
   + GDB single steps the thread of interest, [non-stop mode only] all
     other threads are left as they were, either running or stopped.
     In all-stop, all other threads are left stopped.
   + New thread is created running,
   + Initial thread completes its step, GDB re-adjusts its PC,
     restores/releases scratchpad,
   + [non-stop mode only] GDB resumes the thread, now past its
     breakpoint.
   + [all-stop mode only] GDB resumes all threads.

There is one problem with the displaced stepping scenario above:

  3. When the parent thread completed its step, GDB adjusted its PC,
     but did not adjust the child's PC, thus that new child thread
     will continue execution in the scratch pad, invoking undefined
     behavior.  If you're lucky, you see a crash.  If unlucky, the
     inferior gets silently corrupted.

What is needed is for GDB to have more control over whether the new
thread is created running or not.  Issue #1 above requires that the
new thread not be allowed to run until the breakpoint has been
reinserted.  The only way to guarantee this is if the new thread is
held in a stopped state until the single step has completed.  Issue #3
above requires that GDB is informed of when a thread clones itself,
and of what is the child's ptid, so that GDB can fixup both the parent
and the child.

When looking for solutions to this problem I considered how GDB
handles fork/vfork as these have some of the same issues.  The main
difference between fork/vfork and clone is that the clone events are
not reported back to core GDB.  Instead, the clone event is handled
automatically in the target code and the child thread is immediately
set running.

Note we have support for requesting thread creation events out of the
target (TARGET_WAITKIND_THREAD_CREATED).  However, those are reported
for the new/child thread.  That would be sufficient to address in-line
stepping (issue #1), but not for displaced-stepping (issue #3).  To
handle displaced-stepping, we need an event that is reported to the
_parent_ of the clone, as the information about the displaced step is
associated with the clone parent.  TARGET_WAITKIND_THREAD_CREATED
includes no indication of which thread is the parent that spawned the
new child.  In fact, for some targets, like e.g., Windows, it would be
impossible to know which thread that was, as thread creation there
doesn't work by "cloning".

The solution implemented here is to model clone on fork/vfork, and
introduce a new TARGET_WAITKIND_THREAD_CLONED event.  This event is
similar to TARGET_WAITKIND_FORKED and TARGET_WAITKIND_VFORKED, except
that we end up with a new thread in the same process, instead of a new
thread of a new process.  Like FORKED and VFORKED, THREAD_CLONED
waitstatuses have a child_ptid property, and the child is held stopped
until GDB explicitly resumes it.  This addresses the in-line stepping
case (issues #1 and #2).

The infrun code that handles displaced stepping fixup for the child
after a fork/vfork event is thus reused for THREAD_CLONE, with some
minimal conditions added, addressing the displaced stepping case
(issue #3).

The native Linux backend is adjusted to unconditionally report
TARGET_WAITKIND_THREAD_CLONED events to the core.

Following the follow_fork model in core GDB, we introduce a
target_follow_clone target method, which is responsible for making the
new clone child visible to the rest of GDB.

Subsequent patches will add clone events support to the remote
protocol and gdbserver.

A testcase will be added by a later patch.

displaced_step_in_progress_thread becomes unused with this patch, but
a new use will reappear later in the series.  To avoid deleting it and
readding it back, this patch marks it with attribute unused, and the
latter patch removes the attribute again.  We need to do this because
the function is static, and with no callers, the compiler would warn,
(error with -Werror), breaking the build.

Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=19675
Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=27830

Change-Id: I474e9a7015dd3d33469e322a5764ae83f8a32787
---
 gdb/infrun.c            | 158 +++++++++++++------------
 gdb/linux-nat.c         | 248 +++++++++++++++++++++-------------------
 gdb/linux-nat.h         |   2 +
 gdb/target-delegates.c  |  24 ++++
 gdb/target.c            |   7 ++
 gdb/target.h            |   2 +
 gdb/target/waitstatus.c |   1 +
 gdb/target/waitstatus.h |  31 ++++-
 8 files changed, 281 insertions(+), 192 deletions(-)

diff --git a/gdb/infrun.c b/gdb/infrun.c
index 0590310ffac..f7786672004 100644
--- a/gdb/infrun.c
+++ b/gdb/infrun.c
@@ -1583,6 +1583,7 @@ step_over_info_valid_p (void)
 /* Return true if THREAD is doing a displaced step.  */
 
 static bool
+ATTRIBUTE_UNUSED
 displaced_step_in_progress_thread (thread_info *thread)
 {
   gdb_assert (thread != nullptr);
@@ -1897,6 +1898,31 @@ static displaced_step_finish_status
 displaced_step_finish (thread_info *event_thread,
 		       const target_waitstatus &event_status)
 {
+  /* Check whether the parent is displaced stepping.  */
+  struct regcache *regcache = get_thread_regcache (event_thread);
+  struct gdbarch *gdbarch = regcache->arch ();
+  inferior *parent_inf = event_thread->inf;
+
+  /* If this was a fork/vfork/clone, this event indicates that the
+     displaced stepping of the syscall instruction has been done, so
+     we perform cleanup for parent here.  Also note that this
+     operation also cleans up the child for vfork, because their pages
+     are shared.  */
+
+  /* If this is a fork (child gets its own address space copy) and
+     some displaced step buffers were in use at the time of the fork,
+     restore the displaced step buffer bytes in the child process.
+
+     Architectures which support displaced stepping and fork events
+     must supply an implementation of
+     gdbarch_displaced_step_restore_all_in_ptid.  This is not enforced
+     during gdbarch validation to support architectures which support
+     displaced stepping but not forks.  */
+  if (event_status.kind () == TARGET_WAITKIND_FORKED
+      && gdbarch_supports_displaced_stepping (gdbarch))
+    gdbarch_displaced_step_restore_all_in_ptid
+      (gdbarch, parent_inf, event_status.child_ptid ());
+
   displaced_step_thread_state *displaced = &event_thread->displaced_step_state;
 
   /* Was this thread performing a displaced step?  */
@@ -1916,8 +1942,39 @@ displaced_step_finish (thread_info *event_thread,
 
   /* Do the fixup, and release the resources acquired to do the displaced
      step. */
-  return gdbarch_displaced_step_finish (displaced->get_original_gdbarch (),
-					event_thread, event_status);
+  displaced_step_finish_status status
+    = gdbarch_displaced_step_finish (displaced->get_original_gdbarch (),
+				     event_thread, event_status);
+
+  if (event_status.kind () == TARGET_WAITKIND_FORKED
+      || event_status.kind () == TARGET_WAITKIND_VFORKED
+      || event_status.kind () == TARGET_WAITKIND_THREAD_CLONED)
+    {
+      /* Since the vfork/fork/clone syscall instruction was executed
+	 in the scratchpad, the child's PC is also within the
+	 scratchpad.  Set the child's PC to the parent's PC value,
+	 which has already been fixed up.  Note: we use the parent's
+	 aspace here, although we're touching the child, because the
+	 child hasn't been added to the inferior list yet at this
+	 point.  */
+
+      struct regcache *child_regcache
+	= get_thread_arch_aspace_regcache (parent_inf->process_target (),
+					   event_status.child_ptid (),
+					   gdbarch,
+					   parent_inf->aspace);
+      /* Read PC value of parent.  */
+      CORE_ADDR parent_pc = regcache_read_pc (regcache);
+
+      displaced_debug_printf ("write child pc from %s to %s",
+			      paddress (gdbarch,
+					regcache_read_pc (child_regcache)),
+			      paddress (gdbarch, parent_pc));
+
+      regcache_write_pc (child_regcache, parent_pc);
+    }
+
+  return status;
 }
 
 /* Data to be passed around while handling an event.  This data is
@@ -5663,67 +5720,13 @@ handle_inferior_event (struct execution_control_state *ecs)
 
     case TARGET_WAITKIND_FORKED:
     case TARGET_WAITKIND_VFORKED:
-      /* Check whether the inferior is displaced stepping.  */
-      {
-	struct regcache *regcache = get_thread_regcache (ecs->event_thread);
-	struct gdbarch *gdbarch = regcache->arch ();
-	inferior *parent_inf = find_inferior_ptid (ecs->target, ecs->ptid);
-
-	/* If this is a fork (child gets its own address space copy)
-	   and some displaced step buffers were in use at the time of
-	   the fork, restore the displaced step buffer bytes in the
-	   child process.
-
-	   Architectures which support displaced stepping and fork
-	   events must supply an implementation of
-	   gdbarch_displaced_step_restore_all_in_ptid.  This is not
-	   enforced during gdbarch validation to support architectures
-	   which support displaced stepping but not forks.  */
-	if (ecs->ws.kind () == TARGET_WAITKIND_FORKED
-	    && gdbarch_supports_displaced_stepping (gdbarch))
-	  gdbarch_displaced_step_restore_all_in_ptid
-	    (gdbarch, parent_inf, ecs->ws.child_ptid ());
-
-	/* If displaced stepping is supported, and thread ecs->ptid is
-	   displaced stepping.  */
-	if (displaced_step_in_progress_thread (ecs->event_thread))
-	  {
-	    struct regcache *child_regcache;
-	    CORE_ADDR parent_pc;
-
-	    /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
-	       indicating that the displaced stepping of syscall instruction
-	       has been done.  Perform cleanup for parent process here.  Note
-	       that this operation also cleans up the child process for vfork,
-	       because their pages are shared.  */
-	    displaced_step_finish (ecs->event_thread, ecs->ws);
-	    /* Start a new step-over in another thread if there's one
-	       that needs it.  */
-	    start_step_over ();
-
-	    /* Since the vfork/fork syscall instruction was executed in the scratchpad,
-	       the child's PC is also within the scratchpad.  Set the child's PC
-	       to the parent's PC value, which has already been fixed up.
-	       FIXME: we use the parent's aspace here, although we're touching
-	       the child, because the child hasn't been added to the inferior
-	       list yet at this point.  */
-
-	    child_regcache
-	      = get_thread_arch_aspace_regcache (parent_inf->process_target (),
-						 ecs->ws.child_ptid (),
-						 gdbarch,
-						 parent_inf->aspace);
-	    /* Read PC value of parent process.  */
-	    parent_pc = regcache_read_pc (regcache);
-
-	    displaced_debug_printf ("write child pc from %s to %s",
-				    paddress (gdbarch,
-					      regcache_read_pc (child_regcache)),
-				    paddress (gdbarch, parent_pc));
-
-	    regcache_write_pc (child_regcache, parent_pc);
-	  }
-      }
+    case TARGET_WAITKIND_THREAD_CLONED:
+
+      displaced_step_finish (ecs->event_thread, ecs->ws);
+
+      /* Start a new step-over in another thread if there's one that
+	 needs it.  */
+      start_step_over ();
 
       context_switch (ecs);
 
@@ -5739,7 +5742,7 @@ handle_inferior_event (struct execution_control_state *ecs)
 	 need to unpatch at follow/detach time instead to be certain
 	 that new breakpoints added between catchpoint hit time and
 	 vfork follow are detached.  */
-      if (ecs->ws.kind () != TARGET_WAITKIND_VFORKED)
+      if (ecs->ws.kind () == TARGET_WAITKIND_FORKED)
 	{
 	  /* This won't actually modify the breakpoint list, but will
 	     physically remove the breakpoints from the child.  */
@@ -5771,14 +5774,24 @@ handle_inferior_event (struct execution_control_state *ecs)
       if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
 	{
 	  bool follow_child
-	    = (follow_fork_mode_string == follow_fork_mode_child);
+	    = (ecs->ws.kind () != TARGET_WAITKIND_THREAD_CLONED
+	       && follow_fork_mode_string == follow_fork_mode_child);
 
 	  ecs->event_thread->set_stop_signal (GDB_SIGNAL_0);
 
 	  process_stratum_target *targ
 	    = ecs->event_thread->inf->process_target ();
 
-	  bool should_resume = follow_fork ();
+	  bool should_resume;
+	  if (ecs->ws.kind () != TARGET_WAITKIND_THREAD_CLONED)
+	    should_resume = follow_fork ();
+	  else
+	    {
+	      should_resume = true;
+	      inferior *inf = ecs->event_thread->inf;
+	      inf->top_target ()->follow_clone (ecs->ws.child_ptid ());
+	      ecs->event_thread->pending_follow.set_spurious ();
+	    }
 
 	  /* Note that one of these may be an invalid pointer,
 	     depending on detach_fork.  */
@@ -5789,16 +5802,21 @@ handle_inferior_event (struct execution_control_state *ecs)
 	     child is marked stopped.  */
 
 	  /* If not resuming the parent, mark it stopped.  */
-	  if (follow_child && !detach_fork && !non_stop && !sched_multi)
+	  if (ecs->ws.kind () != TARGET_WAITKIND_THREAD_CLONED
+	      && follow_child && !detach_fork && !non_stop && !sched_multi)
 	    parent->set_running (false);
 
 	  /* If resuming the child, mark it running.  */
-	  if (follow_child || (!detach_fork && (non_stop || sched_multi)))
+	  if (ecs->ws.kind () == TARGET_WAITKIND_THREAD_CLONED
+	      || (follow_child || (!detach_fork && (non_stop || sched_multi))))
 	    child->set_running (true);
 
 	  /* In non-stop mode, also resume the other branch.  */
-	  if (!detach_fork && (non_stop
-			       || (sched_multi && target_is_non_stop_p ())))
+	  if ((ecs->ws.kind () == TARGET_WAITKIND_THREAD_CLONED
+	       && target_is_non_stop_p ())
+	      || (!detach_fork && (non_stop
+				   || (sched_multi
+				       && target_is_non_stop_p ()))))
 	    {
 	      if (follow_child)
 		switch_to_thread (parent);
diff --git a/gdb/linux-nat.c b/gdb/linux-nat.c
index 5ee3227f1b9..f3d02b740e8 100644
--- a/gdb/linux-nat.c
+++ b/gdb/linux-nat.c
@@ -1286,64 +1286,79 @@ get_detach_signal (struct lwp_info *lp)
   return 0;
 }
 
-/* Detach from LP.  If SIGNO_P is non-NULL, then it points to the
-   signal number that should be passed to the LWP when detaching.
-   Otherwise pass any pending signal the LWP may have, if any.  */
+/* If LP has a pending fork/vfork/clone status, return it.  */
 
-static void
-detach_one_lwp (struct lwp_info *lp, int *signo_p)
+static gdb::optional<target_waitstatus>
+get_pending_child_status (lwp_info *lp)
 {
-  int lwpid = lp->ptid.lwp ();
-  int signo;
-
-  gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
-
-  /* If the lwp/thread we are about to detach has a pending fork event,
-     there is a process GDB is attached to that the core of GDB doesn't know
-     about.  Detach from it.  */
-
   /* Check in lwp_info::status.  */
   if (WIFSTOPPED (lp->status) && linux_is_extended_waitstatus (lp->status))
     {
       int event = linux_ptrace_get_extended_event (lp->status);
 
-      if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
+      if (event == PTRACE_EVENT_FORK
+	  || event == PTRACE_EVENT_VFORK
+	  || event == PTRACE_EVENT_CLONE)
 	{
 	  unsigned long child_pid;
 	  int ret = ptrace (PTRACE_GETEVENTMSG, lp->ptid.lwp (), 0, &child_pid);
 	  if (ret == 0)
-	    detach_one_pid (child_pid, 0);
+	    {
+	      target_waitstatus ws;
+
+	      if (event == PTRACE_EVENT_FORK)
+		ws.set_forked (ptid_t (child_pid, child_pid));
+	      else if (event == PTRACE_EVENT_VFORK)
+		ws.set_vforked (ptid_t (child_pid, child_pid));
+	      else if (event == PTRACE_EVENT_CLONE)
+		ws.set_thread_cloned (ptid_t (lp->ptid.pid (), child_pid));
+	      else
+		gdb_assert_not_reached ("unhandled");
+
+	      return ws;
+	    }
 	  else
-	    perror_warning_with_name (_("Failed to detach fork child"));
+	    {
+	      perror_warning_with_name (_("Failed to retrieve event msg"));
+	      return {};
+	    }
 	}
     }
 
   /* Check in lwp_info::waitstatus.  */
-  if (lp->waitstatus.kind () == TARGET_WAITKIND_VFORKED
-      || lp->waitstatus.kind () == TARGET_WAITKIND_FORKED)
-    detach_one_pid (lp->waitstatus.child_ptid ().pid (), 0);
-
+  if (is_new_child_status (lp->waitstatus.kind ()))
+    return lp->waitstatus;
 
-  /* Check in thread_info::pending_waitstatus.  */
   thread_info *tp = find_thread_ptid (linux_target, lp->ptid);
-  if (tp->has_pending_waitstatus ())
-    {
-      const target_waitstatus &ws = tp->pending_waitstatus ();
 
-      if (ws.kind () == TARGET_WAITKIND_VFORKED
-	  || ws.kind () == TARGET_WAITKIND_FORKED)
-	detach_one_pid (ws.child_ptid ().pid (), 0);
-    }
+  /* Check in thread_info::pending_waitstatus.  */
+  if (tp->has_pending_waitstatus ()
+      && is_new_child_status (tp->pending_waitstatus ().kind ()))
+    return tp->pending_waitstatus ();
 
   /* Check in thread_info::pending_follow.  */
-  if (tp->pending_follow.kind () == TARGET_WAITKIND_VFORKED
-      || tp->pending_follow.kind () == TARGET_WAITKIND_FORKED)
-    detach_one_pid (tp->pending_follow.child_ptid ().pid (), 0);
+  if (is_new_child_status (tp->pending_follow.kind ()))
+    return tp->pending_follow;
 
-  if (lp->status != 0)
-    linux_nat_debug_printf ("Pending %s for %s on detach.",
-			    strsignal (WSTOPSIG (lp->status)),
-			    lp->ptid.to_string ().c_str ());
+  return {};
+}
+
+/* Detach from LP.  If SIGNO_P is non-NULL, then it points to the
+   signal number that should be passed to the LWP when detaching.
+   Otherwise pass any pending signal the LWP may have, if any.  */
+
+static void
+detach_one_lwp (struct lwp_info *lp, int *signo_p)
+{
+  int lwpid = lp->ptid.lwp ();
+  int signo;
+
+  /* If the lwp/thread we are about to detach has a pending fork/clone
+     event, there is a process/thread GDB is attached to that the core
+     of GDB doesn't know about.  Detach from it.  */
+
+  if (gdb::optional<target_waitstatus> ws = get_pending_child_status (lp))
+    detach_one_pid (ws->child_ptid ().lwp (), 0);
 
   /* If there is a pending SIGSTOP, get rid of it.  */
   if (lp->signalled)
@@ -1821,6 +1836,53 @@ linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
   return 1;
 }
 
+void
+linux_nat_target::follow_clone (ptid_t child_ptid)
+{
+  lwp_info *new_lp = add_lwp (child_ptid);
+  new_lp->stopped = 1;
+
+  /* If the thread_db layer is active, let it record the user
+     level thread id and status, and add the thread to GDB's
+     list.  */
+  if (!thread_db_notice_clone (inferior_ptid, new_lp->ptid))
+    {
+      /* The process is not using thread_db.  Add the LWP to
+	 GDB's list.  */
+      add_thread (linux_target, new_lp->ptid);
+    }
+
+  /* We just created NEW_LP so it cannot yet contain STATUS.  */
+  gdb_assert (new_lp->status == 0);
+
+  if (!pull_pid_from_list (&stopped_pids, child_ptid.lwp (), &new_lp->status))
+    internal_error (_("no saved status for clone lwp"));
+
+  if (WSTOPSIG (new_lp->status) != SIGSTOP)
+    {
+      /* This can happen if someone starts sending signals to
+	 the new thread before it gets a chance to run, which
+	 have a lower number than SIGSTOP (e.g. SIGUSR1).
+	 This is an unlikely case, and harder to handle for
+	 fork / vfork than for clone, so we do not try - but
+	 we handle it for clone events here.  */
+
+      new_lp->signalled = 1;
+
+      /* Save the wait status to report later.  */
+      linux_nat_debug_printf
+	("waitpid of new LWP %ld, saving status %s",
+	 (long) new_lp->ptid.lwp (), status_to_str (new_lp->status).c_str ());
+    }
+  else
+    {
+      new_lp->status = 0;
+
+      if (report_thread_events)
+	new_lp->waitstatus.set_thread_created ();
+    }
+}
+
 /* Handle a GNU/Linux extended wait response.  If we see a clone
    event, we need to add the new LWP to our list (and not report the
    trap to higher layers).  This function returns non-zero if the
@@ -1861,11 +1923,9 @@ linux_handle_extended_wait (struct lwp_info *lp, int status)
 	    internal_error (_("wait returned unexpected status 0x%x"), status);
 	}
 
-      ptid_t child_ptid (new_pid, new_pid);
-
       if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
 	{
-	  open_proc_mem_file (child_ptid);
+	  open_proc_mem_file (ptid_t (new_pid, new_pid));
 
 	  /* The arch-specific native code may need to know about new
 	     forks even if those end up never mapped to an
@@ -1902,66 +1962,18 @@ linux_handle_extended_wait (struct lwp_info *lp, int status)
 	}
 
       if (event == PTRACE_EVENT_FORK)
-	ourstatus->set_forked (child_ptid);
+	ourstatus->set_forked (ptid_t (new_pid, new_pid));
       else if (event == PTRACE_EVENT_VFORK)
-	ourstatus->set_vforked (child_ptid);
+	ourstatus->set_vforked (ptid_t (new_pid, new_pid));
       else if (event == PTRACE_EVENT_CLONE)
 	{
-	  struct lwp_info *new_lp;
-
-	  ourstatus->set_ignore ();
-
 	  linux_nat_debug_printf
 	    ("Got clone event from LWP %d, new child is LWP %ld", pid, new_pid);
 
-	  new_lp = add_lwp (ptid_t (lp->ptid.pid (), new_pid));
-	  new_lp->stopped = 1;
-	  new_lp->resumed = 1;
+	  /* Save the status again, we'll use it in follow_clone.  */
+	  add_to_pid_list (&stopped_pids, new_pid, status);
 
-	  /* If the thread_db layer is active, let it record the user
-	     level thread id and status, and add the thread to GDB's
-	     list.  */
-	  if (!thread_db_notice_clone (lp->ptid, new_lp->ptid))
-	    {
-	      /* The process is not using thread_db.  Add the LWP to
-		 GDB's list.  */
-	      add_thread (linux_target, new_lp->ptid);
-	    }
-
-	  /* Even if we're stopping the thread for some reason
-	     internal to this module, from the perspective of infrun
-	     and the user/frontend, this new thread is running until
-	     it next reports a stop.  */
-	  set_running (linux_target, new_lp->ptid, true);
-	  set_executing (linux_target, new_lp->ptid, true);
-
-	  if (WSTOPSIG (status) != SIGSTOP)
-	    {
-	      /* This can happen if someone starts sending signals to
-		 the new thread before it gets a chance to run, which
-		 have a lower number than SIGSTOP (e.g. SIGUSR1).
-		 This is an unlikely case, and harder to handle for
-		 fork / vfork than for clone, so we do not try - but
-		 we handle it for clone events here.  */
-
-	      new_lp->signalled = 1;
-
-	      /* We created NEW_LP so it cannot yet contain STATUS.  */
-	      gdb_assert (new_lp->status == 0);
-
-	      /* Save the wait status to report later.  */
-	      linux_nat_debug_printf
-		("waitpid of new LWP %ld, saving status %s",
-		 (long) new_lp->ptid.lwp (), status_to_str (status).c_str ());
-	      new_lp->status = status;
-	    }
-	  else if (report_thread_events)
-	    {
-	      new_lp->waitstatus.set_thread_created ();
-	      new_lp->status = status;
-	    }
-
-	  return 1;
+	  ourstatus->set_thread_cloned (ptid_t (lp->ptid.pid (), new_pid));
 	}
 
       return 0;
@@ -3536,59 +3548,55 @@ kill_wait_callback (struct lwp_info *lp)
   return 0;
 }
 
-/* Kill the fork children of any threads of inferior INF that are
-   stopped at a fork event.  */
+/* Kill the fork/clone child of LP if it has an unfollowed child.  */
 
-static void
-kill_unfollowed_fork_children (struct inferior *inf)
+static int
+kill_unfollowed_child_callback (lwp_info *lp)
 {
-  for (thread_info *thread : inf->non_exited_threads ())
+  if (gdb::optional<target_waitstatus> ws = get_pending_child_status (lp))
     {
-      struct target_waitstatus *ws = &thread->pending_follow;
-
-      if (ws->kind () == TARGET_WAITKIND_FORKED
-	  || ws->kind () == TARGET_WAITKIND_VFORKED)
-	{
-	  ptid_t child_ptid = ws->child_ptid ();
-	  int child_pid = child_ptid.pid ();
-	  int child_lwp = child_ptid.lwp ();
+      ptid_t child_ptid = ws->child_ptid ();
+      int child_pid = child_ptid.pid ();
+      int child_lwp = child_ptid.lwp ();
 
-	  kill_one_lwp (child_lwp);
-	  kill_wait_one_lwp (child_lwp);
+      kill_one_lwp (child_lwp);
+      kill_wait_one_lwp (child_lwp);
 
-	  /* Let the arch-specific native code know this process is
-	     gone.  */
-	  linux_target->low_forget_process (child_pid);
-	}
+      /* Let the arch-specific native code know this process is
+	 gone.  */
+      if (ws->kind () != TARGET_WAITKIND_THREAD_CLONED)
+	linux_target->low_forget_process (child_pid);
     }
+
+  return 0;
 }
 
 void
 linux_nat_target::kill ()
 {
-  /* If we're stopped while forking and we haven't followed yet,
-     kill the other task.  We need to do this first because the
+  ptid_t pid_ptid (inferior_ptid.pid ());
+
+  /* If we're stopped while forking/cloning and we haven't followed
+     yet, kill the child task.  We need to do this first because the
      parent will be sleeping if this is a vfork.  */
-  kill_unfollowed_fork_children (current_inferior ());
+  iterate_over_lwps (pid_ptid, kill_unfollowed_child_callback);
 
   if (forks_exist_p ())
     linux_fork_killall ();
   else
     {
-      ptid_t ptid = ptid_t (inferior_ptid.pid ());
-
       /* Stop all threads before killing them, since ptrace requires
 	 that the thread is stopped to successfully PTRACE_KILL.  */
-      iterate_over_lwps (ptid, stop_callback);
+      iterate_over_lwps (pid_ptid, stop_callback);
       /* ... and wait until all of them have reported back that
 	 they're no longer running.  */
-      iterate_over_lwps (ptid, stop_wait_callback);
+      iterate_over_lwps (pid_ptid, stop_wait_callback);
 
       /* Kill all LWP's ...  */
-      iterate_over_lwps (ptid, kill_callback);
+      iterate_over_lwps (pid_ptid, kill_callback);
 
       /* ... and wait until we've flushed all events.  */
-      iterate_over_lwps (ptid, kill_wait_callback);
+      iterate_over_lwps (pid_ptid, kill_wait_callback);
     }
 
   target_mourn_inferior (inferior_ptid);
diff --git a/gdb/linux-nat.h b/gdb/linux-nat.h
index a9b91a5e908..3ed25cc5ba4 100644
--- a/gdb/linux-nat.h
+++ b/gdb/linux-nat.h
@@ -129,6 +129,8 @@ class linux_nat_target : public inf_ptrace_target
 
   void follow_fork (inferior *, ptid_t, target_waitkind, bool, bool) override;
 
+  void follow_clone (ptid_t) override;
+
   std::vector<static_tracepoint_marker>
     static_tracepoint_markers_by_strid (const char *id) override;
 
diff --git a/gdb/target-delegates.c b/gdb/target-delegates.c
index daf46821be0..bee46608c38 100644
--- a/gdb/target-delegates.c
+++ b/gdb/target-delegates.c
@@ -76,6 +76,7 @@ struct dummy_target : public target_ops
   int insert_vfork_catchpoint (int arg0) override;
   int remove_vfork_catchpoint (int arg0) override;
   void follow_fork (inferior *arg0, ptid_t arg1, target_waitkind arg2, bool arg3, bool arg4) override;
+  void follow_clone (ptid_t arg0) override;
   int insert_exec_catchpoint (int arg0) override;
   int remove_exec_catchpoint (int arg0) override;
   void follow_exec (inferior *arg0, ptid_t arg1, const char *arg2) override;
@@ -250,6 +251,7 @@ struct debug_target : public target_ops
   int insert_vfork_catchpoint (int arg0) override;
   int remove_vfork_catchpoint (int arg0) override;
   void follow_fork (inferior *arg0, ptid_t arg1, target_waitkind arg2, bool arg3, bool arg4) override;
+  void follow_clone (ptid_t arg0) override;
   int insert_exec_catchpoint (int arg0) override;
   int remove_exec_catchpoint (int arg0) override;
   void follow_exec (inferior *arg0, ptid_t arg1, const char *arg2) override;
@@ -1545,6 +1547,28 @@ debug_target::follow_fork (inferior *arg0, ptid_t arg1, target_waitkind arg2, bo
   gdb_puts (")\n", gdb_stdlog);
 }
 
+void
+target_ops::follow_clone (ptid_t arg0)
+{
+  this->beneath ()->follow_clone (arg0);
+}
+
+void
+dummy_target::follow_clone (ptid_t arg0)
+{
+  default_follow_clone (this, arg0);
+}
+
+void
+debug_target::follow_clone (ptid_t arg0)
+{
+  gdb_printf (gdb_stdlog, "-> %s->follow_clone (...)\n", this->beneath ()->shortname ());
+  this->beneath ()->follow_clone (arg0);
+  gdb_printf (gdb_stdlog, "<- %s->follow_clone (", this->beneath ()->shortname ());
+  target_debug_print_ptid_t (arg0);
+  gdb_puts (")\n", gdb_stdlog);
+}
+
 int
 target_ops::insert_exec_catchpoint (int arg0)
 {
diff --git a/gdb/target.c b/gdb/target.c
index f781f7e4f96..2fb09c2817d 100644
--- a/gdb/target.c
+++ b/gdb/target.c
@@ -2732,6 +2732,13 @@ default_follow_fork (struct target_ops *self, inferior *child_inf,
   internal_error (_("could not find a target to follow fork"));
 }
 
+static void
+default_follow_clone (struct target_ops *self, ptid_t child_ptid)
+{
+  /* Some target returned a clone event, but did not know how to follow it.  */
+  internal_error (_("could not find a target to follow clone"));
+}
+
 /* See target.h.  */
 
 void
diff --git a/gdb/target.h b/gdb/target.h
index 28aa9273893..aab390aec57 100644
--- a/gdb/target.h
+++ b/gdb/target.h
@@ -637,6 +637,8 @@ struct target_ops
       TARGET_DEFAULT_RETURN (1);
     virtual void follow_fork (inferior *, ptid_t, target_waitkind, bool, bool)
       TARGET_DEFAULT_FUNC (default_follow_fork);
+    virtual void follow_clone (ptid_t)
+      TARGET_DEFAULT_FUNC (default_follow_clone);
     virtual int insert_exec_catchpoint (int)
       TARGET_DEFAULT_RETURN (1);
     virtual int remove_exec_catchpoint (int)
diff --git a/gdb/target/waitstatus.c b/gdb/target/waitstatus.c
index ef432bb629d..3e45e4f32fa 100644
--- a/gdb/target/waitstatus.c
+++ b/gdb/target/waitstatus.c
@@ -45,6 +45,7 @@ DIAGNOSTIC_ERROR_SWITCH
 
     case TARGET_WAITKIND_FORKED:
     case TARGET_WAITKIND_VFORKED:
+    case TARGET_WAITKIND_THREAD_CLONED:
       return string_appendf (str, ", child_ptid = %s",
 			     this->child_ptid ().to_string ().c_str ());
 
diff --git a/gdb/target/waitstatus.h b/gdb/target/waitstatus.h
index 63bbd737749..2072eb018ae 100644
--- a/gdb/target/waitstatus.h
+++ b/gdb/target/waitstatus.h
@@ -95,6 +95,13 @@ enum target_waitkind
   /* There are no resumed children left in the program.  */
   TARGET_WAITKIND_NO_RESUMED,
 
+  /* The thread was cloned.  The event's ptid corresponds to the
+     cloned parent.  The cloned child is held stopped at its entry
+     point, and its ptid is in the event's m_child_ptid.  The target
+     must not add the cloned child to GDB's thread list until
+     target_ops::follow_clone() is called.  */
+  TARGET_WAITKIND_THREAD_CLONED,
+
   /* The thread was created.  */
   TARGET_WAITKIND_THREAD_CREATED,
 
@@ -102,6 +109,17 @@ enum target_waitkind
   TARGET_WAITKIND_THREAD_EXITED,
 };
 
+/* Determine if KIND represents an event with a new child - a fork,
+   vfork, or clone.  */
+
+static inline bool
+is_new_child_status (target_waitkind kind)
+{
+  return (kind == TARGET_WAITKIND_FORKED
+	  || kind == TARGET_WAITKIND_VFORKED
+	  || kind == TARGET_WAITKIND_THREAD_CLONED);
+}
+
 /* Return KIND as a string.  */
 
 static inline const char *
@@ -125,6 +143,8 @@ DIAGNOSTIC_ERROR_SWITCH
       return "FORKED";
     case TARGET_WAITKIND_VFORKED:
       return "VFORKED";
+    case TARGET_WAITKIND_THREAD_CLONED:
+      return "THREAD_CLONED";
     case TARGET_WAITKIND_EXECD:
       return "EXECD";
     case TARGET_WAITKIND_VFORK_DONE:
@@ -325,6 +345,14 @@ struct target_waitstatus
     return *this;
   }
 
+  target_waitstatus &set_thread_cloned (ptid_t child_ptid)
+  {
+    this->reset ();
+    m_kind = TARGET_WAITKIND_THREAD_CLONED;
+    m_value.child_ptid = child_ptid;
+    return *this;
+  }
+
   target_waitstatus &set_thread_created ()
   {
     this->reset ();
@@ -369,8 +397,7 @@ struct target_waitstatus
 
   ptid_t child_ptid () const
   {
-    gdb_assert (m_kind == TARGET_WAITKIND_FORKED
-		|| m_kind == TARGET_WAITKIND_VFORKED);
+    gdb_assert (is_new_child_status (m_kind));
     return m_value.child_ptid;
   }
 
-- 
2.36.0


  parent reply	other threads:[~2022-12-12 20:31 UTC|newest]

Thread overview: 100+ messages / expand[flat|nested]  mbox.gz  Atom feed  top
2022-12-12 20:30 [PATCH 00/31] Step over thread clone and thread exit Pedro Alves
2022-12-12 20:30 ` [PATCH 01/31] displaced step: pass down target_waitstatus instead of gdb_signal Pedro Alves
2023-02-03 10:44   ` Andrew Burgess
2023-03-10 17:15     ` Pedro Alves
2023-03-16 16:07       ` Andrew Burgess
2023-03-22 21:29         ` Andrew Burgess
2023-03-23 15:15           ` Pedro Alves
2023-03-27 12:40             ` Andrew Burgess
2023-03-27 16:21               ` Pedro Alves
2022-12-12 20:30 ` [PATCH 02/31] linux-nat: introduce pending_status_str Pedro Alves
2023-02-03 12:00   ` Andrew Burgess
2023-03-10 17:15     ` Pedro Alves
2023-03-16 16:19       ` Andrew Burgess
2023-03-27 18:05         ` Pedro Alves
2022-12-12 20:30 ` [PATCH 03/31] gdb/linux: Delete all other LWPs immediately on ptrace exec event Pedro Alves
2023-03-21 14:50   ` Andrew Burgess
2023-04-04 13:57     ` Pedro Alves
2023-04-14 19:29       ` Pedro Alves
2023-05-26 15:04         ` Andrew Burgess
2023-11-13 14:04           ` Pedro Alves
2023-05-26 14:45       ` Andrew Burgess
2022-12-12 20:30 ` Pedro Alves [this message]
2023-02-04 15:38   ` [PATCH 04/31] Step over clone syscall w/ breakpoint, TARGET_WAITKIND_THREAD_CLONED Andrew Burgess
2023-03-10 17:16     ` Pedro Alves
2023-03-21 16:06       ` Andrew Burgess
2023-11-13 14:05         ` Pedro Alves
2022-12-12 20:30 ` [PATCH 05/31] Support clone events in the remote protocol Pedro Alves
2023-03-22 15:46   ` Andrew Burgess
2023-11-13 14:05     ` Pedro Alves
2022-12-12 20:30 ` [PATCH 06/31] Avoid duplicate QThreadEvents packets Pedro Alves
2023-05-26 15:53   ` Andrew Burgess
2022-12-12 20:30 ` [PATCH 07/31] enum_flags to_string Pedro Alves
2023-01-30 20:07   ` Simon Marchi
2022-12-12 20:30 ` [PATCH 08/31] Thread options & clone events (core + remote) Pedro Alves
2023-01-31 12:25   ` Lancelot SIX
2023-03-10 19:16     ` Pedro Alves
2023-06-06 13:29       ` Andrew Burgess
2023-11-13 14:07         ` Pedro Alves
2022-12-12 20:30 ` [PATCH 09/31] Thread options & clone events (native Linux) Pedro Alves
2023-06-06 13:43   ` Andrew Burgess
2022-12-12 20:30 ` [PATCH 10/31] Thread options & clone events (Linux GDBserver) Pedro Alves
2023-06-06 14:12   ` Andrew Burgess
2023-11-13 14:07     ` Pedro Alves
2022-12-12 20:30 ` [PATCH 11/31] gdbserver: Hide and don't detach pending clone children Pedro Alves
2023-06-07 16:10   ` Andrew Burgess
2023-11-13 14:08     ` Pedro Alves
2022-12-12 20:30 ` [PATCH 12/31] Remove gdb/19675 kfails (displaced stepping + clone) Pedro Alves
2023-06-07 17:08   ` Andrew Burgess
2022-12-12 20:30 ` [PATCH 13/31] Add test for stepping over clone syscall Pedro Alves
2023-06-07 17:42   ` Andrew Burgess
2023-11-13 14:09     ` Pedro Alves
2022-12-12 20:30 ` [PATCH 14/31] all-stop/synchronous RSP support thread-exit events Pedro Alves
2023-06-07 17:52   ` Andrew Burgess
2023-11-13 14:11     ` Pedro Alves
2023-12-15 18:15       ` Pedro Alves
2022-12-12 20:30 ` [PATCH 15/31] gdbserver/linux-low.cc: Ignore event_ptid if TARGET_WAITKIND_IGNORE Pedro Alves
2022-12-12 20:30 ` [PATCH 16/31] Move deleting thread on TARGET_WAITKIND_THREAD_EXITED to core Pedro Alves
2023-06-08 12:27   ` Andrew Burgess
2022-12-12 20:30 ` [PATCH 17/31] Introduce GDB_THREAD_OPTION_EXIT thread option, fix step-over-thread-exit Pedro Alves
2023-06-08 13:17   ` Andrew Burgess
2022-12-12 20:30 ` [PATCH 18/31] Implement GDB_THREAD_OPTION_EXIT support for Linux GDBserver Pedro Alves
2023-06-08 14:14   ` Andrew Burgess
2022-12-12 20:30 ` [PATCH 19/31] Implement GDB_THREAD_OPTION_EXIT support for native Linux Pedro Alves
2023-06-08 14:17   ` Andrew Burgess
2022-12-12 20:30 ` [PATCH 20/31] gdb: clear step over information on thread exit (PR gdb/27338) Pedro Alves
2023-06-08 15:29   ` Andrew Burgess
2022-12-12 20:30 ` [PATCH 21/31] stop_all_threads: (re-)enable async before waiting for stops Pedro Alves
2023-06-08 15:49   ` Andrew Burgess
2023-11-13 14:12     ` Pedro Alves
2022-12-12 20:30 ` [PATCH 22/31] gdbserver: Queue no-resumed event after thread exit Pedro Alves
2023-06-08 18:16   ` Andrew Burgess
2023-11-13 14:12     ` Pedro Alves
2022-12-12 20:30 ` [PATCH 23/31] Don't resume new threads if scheduler-locking is in effect Pedro Alves
2023-06-08 18:24   ` Andrew Burgess
2023-11-13 14:12     ` Pedro Alves
2022-12-12 20:30 ` [PATCH 24/31] Report thread exit event for leader if reporting thread exit events Pedro Alves
2023-06-09 13:11   ` Andrew Burgess
2022-12-12 20:30 ` [PATCH 25/31] Ignore failure to read PC when resuming Pedro Alves
2023-06-10 10:33   ` Andrew Burgess
2023-11-13 14:13     ` Pedro Alves
2022-12-12 20:30 ` [PATCH 26/31] gdb/testsuite/lib/my-syscalls.S: Refactor new SYSCALL macro Pedro Alves
2023-06-10 10:33   ` Andrew Burgess
2022-12-12 20:30 ` [PATCH 27/31] Testcases for stepping over thread exit syscall (PR gdb/27338) Pedro Alves
2023-06-12  9:53   ` Andrew Burgess
2022-12-12 20:30 ` [PATCH 28/31] Document remote clone events, and QThreadOptions packet Pedro Alves
2023-06-05 15:53   ` Andrew Burgess
2023-11-13 14:13     ` Pedro Alves
2023-06-12 12:06   ` Andrew Burgess
2023-11-13 14:15     ` Pedro Alves
2022-12-12 20:30 ` [PATCH 29/31] inferior::clear_thread_list always silent Pedro Alves
2023-06-12 12:20   ` Andrew Burgess
2022-12-12 20:31 ` [PATCH 30/31] Centralize "[Thread ...exited]" notifications Pedro Alves
2023-02-04 16:05   ` Andrew Burgess
2023-03-10 17:21     ` Pedro Alves
2023-02-16 15:40   ` Andrew Burgess
2023-06-12 12:23     ` Andrew Burgess
2022-12-12 20:31 ` [PATCH 31/31] Cancel execution command on thread exit, when stepping, nexting, etc Pedro Alves
2023-06-12 13:12   ` Andrew Burgess
2023-01-24 19:47 ` [PATCH v3 00/31] Step over thread clone and thread exit Pedro Alves
2023-11-13 14:24 ` [PATCH " Pedro Alves

Reply instructions:

You may reply publicly to this message via plain-text email
using any one of the following methods:

* Save the following mbox file, import it into your mail client,
  and reply-to-all from there: mbox

  Avoid top-posting and favor interleaved quoting:
  https://en.wikipedia.org/wiki/Posting_style#Interleaved_style

* Reply using the --to, --cc, and --in-reply-to
  switches of git-send-email(1):

  git send-email \
    --in-reply-to=20221212203101.1034916-5-pedro@palves.net \
    --to=pedro@palves.net \
    --cc=gdb-patches@sourceware.org \
    /path/to/YOUR_REPLY

  https://kernel.org/pub/software/scm/git/docs/git-send-email.html

* If your mail client supports setting the In-Reply-To header
  via mailto: links, try the mailto: link
Be sure your reply has a Subject: header at the top and a blank line before the message body.
This is a public inbox, see mirroring instructions
for how to clone and mirror all data and code used for this inbox;
as well as URLs for read-only IMAP folder(s) and NNTP newsgroup(s).