ELF Symbol Meta-Information Implementation
Details

August 2020

This document describes the precise changes to be made to the ELF gABI
to implement Symbol Meta-Information.

4 Object Files

Sections

Table 1: Section types, sh_type

’ Name \ Value ‘
| SHT_SYMTAB_META | 19 |

SHT SYMTAB META This section contains the symbol meta-information
entries for the file. The section might begin with a header, which contains
some supplemental information.

Figure 1: .symtab_meta Header

typedef struct {
unsigned char symtab_hash[20];
} E1£32_SMhdr;

typedef struct {
unsigned char symtab_hash[20];
} E1f64_SMhdr;

symtab hash For .symtab_meta format version >= 2, a 20-byte SHA-1 hash
of the entire contents of .symtab.

Figure 2: sh_link and sh_info interpretation

Name

sh link

sh info

SHT_SYMTAB_META

The section header
index of the

The format version
number of the

associated symbol symbol
table. meta-information
table

(ELFxx_SMH_VER),
and the section
header index of the
.strtab_meta
string table used by
entries in this
section
(ELFXX_SMH_STR)

(a) Accessors for the sh_info field

ELF32_SMH_STR (i) ((1)>>8)
ELF32_SMH_VER(i) ((unsigned char) (i))
ELF32_SMH_INFO(s,v) (((s)<<8)+(unsigned char) (v))

#define
#define
#define

#define
#define
#define

ELF64_SMH_STR(i) ((1)>>32)
ELF64_SMH_VER(i) ((1)&OxfffffE£fL)
ELF64_SMH_INFO(s,v) (((s)<<32)+((v)&OxffffffffL)

Figure 3: .symtab_meta Versions

’ Value

0 Invalid Version

1 There is no header at the beginning of
.symtab_meta.

2 A header containing the hash of .symtab is at
the beginning of .symtab_meta.

Meaning ‘

Special Sections

Figure 4: Special Sections

’ Name \ Type \ Attributes ‘
.symtab_meta | SHT_SYMTAB_META None
.strtab_meta SHT_STRTAB None

.symtab meta This section holds additional “meta-information” about sym-
bols in .symtab. The different types of meta-information are described in
“Symbol Meta-Information”.

.strtab__meta If required, this section holds strings used as a value to certain
types of symbol meta-information. It can be omitted if no symbol meta-
information types require it.

Symbol Meta-Information

Note: This is a new subsection, intended to be placed at the end of the “Symbol

Table” section, after the “Symbol Values” subsection.

ELF relocatable and executable files may contain a new section named . symtab_meta.
This section describes additional information about symbols in .symtab. The
section can be omitted from ELF files if there is no meta-information for any
symbols, but if present, there can only be one section with this name and type.

Symbol Meta-Information Table Entries

Following the initial header of .symtab_meta, there is an array of symbol meta-
information entries.

K typedef struct { \

E1£32_Addr smi_info;
E1f32_Word smi_value;
} E1£32_SymMetaInfo;

typedef struct {
E1f64_Addr smi_info;
E1f64_Xword smi_value;

K } E1f64_SymMetalInfo; /

smi_info This field describes both the symbol table index of the ELF sym-
bol this symbol meta-information this applies to, and the type of meta-
information entry this is. A number of generic types are pre-defined. There
are also reserved ranges for processor-specific and application-specific (i.e.
vendor-specific) types.

#define
#define
#define

#define
#define

ELF32_SMI_SYM(i)
ELF32_SMI_TYPE(i)

((1)>>8)
((unsigned char) (i))

ELF32_SMI_INFO(s,t) (((s)<<8)+(unsigned char) (t))

ELF64_SMI_SYM(i)
ELF64_SMI_TYPE(i)

((1)>>32)
((1)&OxfffffEEfL)

#define ELF64_SMI_INFO(s,t) (((s)<<32)+((t)&OxffffffffL))

smi_ value The interpretation depends on the associated type. The value
could be interpreted as a boolean, symbol table index, address, string

table index etc.

Figure 5: Symbol Meta-Information Types

’ Value \ Type \ Format of Value
0 SMT_NONE None
1 SMT_RETAIN Boolean
2 SMT_LOCATION Address
3 SMT_NOINIT Boolean
4 SMT_PRINTF_FMT Integer
0xC0 SMT_LOPROC Processor-specific
0xDF SMT_HIPROC
0xEO SMT_LOUSER .
OxFF SMT_HIUSER Vendor-specific

SMT NONE This indicates an invalid or incomplete entry.

SMT _ RETAIN A value of 1 indicates the associated symbol should be re-
tained in the output executable file, even it appears unused and so the
linker would normally garbage collect it. Other values result in the type
being ignored.

SMT LOCATION The VMA of the associated symbol in the output exe-

cutable file should be set to the specified the value.

SMT NOINIT A value of 1 indicates the associated data symbol should not
be initialized by the runtime support code at program startup. Other
values result in the type being ignored.

SMT_ PRINTF FMT The value indicates a byte offset into the .strtab_meta

section. The section header table index of .strtab_meta is extracted from
the sh_info value of .symtab_meta, using the ELFxx_SMH_STR accessor.
The null-terminated string extracted from the string table is a de-duplicated
list of format specifiers used by calls to printf-like functions, in the func-
tion whose symbol is pointed to by this entry.
The following C code:

printf (‘%d / %d = %f\n’’, ...);

would generate the following string in .strtab_meta:

Lt%d%f”.

SMT LOPROC..SMT_ HIPROC Values in this range are reserved for
processor-specific semantics.

SMT_ LOUSER..SMT_HIUSER Values in this range are reserved for vendor-

specific semantics.

Restrictions on applying symbol meta-information types to symbols
Symbol meta-information entries are always tied to a symbol in the symbol
table, so there are no special rules regarding different symbols with the same
name; the standard symbol binding rules apply.

No two entries in .symtab_meta can have the same smi_info value - each
symbol must only have one value for a given meta-information type.

Figure 6: Symbol bindings and types permitted for metasyms

Symbol Permitted Symbol Binding Permitted Symbol
Meta-Information Type
Type
SMT_RETAIN Any < STB_L0OOS STT_FUNC

or STT_OBJECT
or STT_COMMON

SMT_LOCATION

Any < STB_LOOS

STT_FUNC
or STT_OBJECT
or STT_COMMON

SMT_NOINIT Any < STB_LOOS STT_OBJECT
or STT_COMMON
SMT_PRINTF_FMT Any < STB_LOOS STT_FUNC

