/* ode-initval/rkf45.c * * Copyright (C) 2001, 2004, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Runge-Kutta-Fehlberg 4(5)*/ /* Reference eg. Hairer, E., Norsett S.P., Wanner, G. Solving ordinary differential equations I, Nonstiff Problems, 2nd revised edition, Springer, 2000. */ #include #include #include #include #include #include "odeiv_util.h" /* Runge-Kutta-Fehlberg coefficients. Zero elements left out */ static const double ah[] = { 1.0/4.0, 3.0/8.0, 12.0/13.0, 1.0, 1.0/2.0 }; static const double b3[] = { 3.0/32.0, 9.0/32.0 }; static const double b4[] = { 1932.0/2197.0, -7200.0/2197.0, 7296.0/2197.0}; static const double b5[] = { 8341.0/4104.0, -32832.0/4104.0, 29440.0/4104.0, -845.0/4104.0}; static const double b6[] = { -6080.0/20520.0, 41040.0/20520.0, -28352.0/20520.0, 9295.0/20520.0, -5643.0/20520.0}; static const double c1 = 902880.0/7618050.0; static const double c3 = 3953664.0/7618050.0; static const double c4 = 3855735.0/7618050.0; static const double c5 = -1371249.0/7618050.0; static const double c6 = 277020.0/7618050.0; /* These are the differences of fifth and fourth order coefficients for error estimation */ static const double ec[] = { 0.0, 1.0 / 360.0, 0.0, -128.0 / 4275.0, -2197.0 / 75240.0, 1.0 / 50.0, 2.0 / 55.0 }; typedef struct { double *k1; double *k2; double *k3; double *k4; double *k5; double *k6; double *y0; double *ytmp; } rkf45_state_t; static void * rkf45_alloc (size_t dim) { rkf45_state_t *state = (rkf45_state_t *) malloc (sizeof (rkf45_state_t)); if (state == 0) { GSL_ERROR_NULL ("failed to allocate space for rkf45_state", GSL_ENOMEM); } state->k1 = (double *) malloc (dim * sizeof (double)); if (state->k1 == 0) { free (state); GSL_ERROR_NULL ("failed to allocate space for k1", GSL_ENOMEM); } state->k2 = (double *) malloc (dim * sizeof (double)); if (state->k2 == 0) { free (state->k1); free (state); GSL_ERROR_NULL ("failed to allocate space for k2", GSL_ENOMEM); } state->k3 = (double *) malloc (dim * sizeof (double)); if (state->k3 == 0) { free (state->k2); free (state->k1); free (state); GSL_ERROR_NULL ("failed to allocate space for k3", GSL_ENOMEM); } state->k4 = (double *) malloc (dim * sizeof (double)); if (state->k4 == 0) { free (state->k3); free (state->k2); free (state->k1); free (state); GSL_ERROR_NULL ("failed to allocate space for k4", GSL_ENOMEM); } state->k5 = (double *) malloc (dim * sizeof (double)); if (state->k5 == 0) { free (state->k4); free (state->k3); free (state->k2); free (state->k1); free (state); GSL_ERROR_NULL ("failed to allocate space for k5", GSL_ENOMEM); } state->k6 = (double *) malloc (dim * sizeof (double)); if (state->k6 == 0) { free (state->k5); free (state->k4); free (state->k3); free (state->k2); free (state->k1); free (state); GSL_ERROR_NULL ("failed to allocate space for k6", GSL_ENOMEM); } state->y0 = (double *) malloc (dim * sizeof (double)); if (state->y0 == 0) { free (state->k6); free (state->k5); free (state->k4); free (state->k3); free (state->k2); free (state->k1); free (state); GSL_ERROR_NULL ("failed to allocate space for y0", GSL_ENOMEM); } state->ytmp = (double *) malloc (dim * sizeof (double)); if (state->ytmp == 0) { free (state->y0); free (state->k6); free (state->k5); free (state->k4); free (state->k3); free (state->k2); free (state->k1); free (state); GSL_ERROR_NULL ("failed to allocate space for ytmp", GSL_ENOMEM); } return state; } static int rkf45_apply (void *vstate, size_t dim, double t, double h, double y[], double yerr[], const double dydt_in[], double dydt_out[], const gsl_odeiv_system * sys) { rkf45_state_t *state = (rkf45_state_t *) vstate; size_t i; double *const k1 = state->k1; double *const k2 = state->k2; double *const k3 = state->k3; double *const k4 = state->k4; double *const k5 = state->k5; double *const k6 = state->k6; double *const ytmp = state->ytmp; double *const y0 = state->y0; DBL_MEMCPY (y0, y, dim); /* k1 step */ if (dydt_in != NULL) { DBL_MEMCPY (k1, dydt_in, dim); } else { int s = GSL_ODEIV_FN_EVAL (sys, t, y, k1); if (s != GSL_SUCCESS) { return s; } } #pragma omp parallel for shared(y,h,dim) private(i) default(none) for (i = 0; i < dim; i++) ytmp[i] = y[i] + ah[0] * h * k1[i]; /* k2 step */ { int s = GSL_ODEIV_FN_EVAL (sys, t + ah[0] * h, ytmp, k2); if (s != GSL_SUCCESS) { return s; } } #pragma omp parallel for shared(y,h,dim) private(i) default(none) for (i = 0; i < dim; i++) ytmp[i] = y[i] + h * (b3[0] * k1[i] + b3[1] * k2[i]); /* k3 step */ { int s = GSL_ODEIV_FN_EVAL (sys, t + ah[1] * h, ytmp, k3); if (s != GSL_SUCCESS) { return s; } } #pragma omp parallel for shared(y,h,dim) private(i) default(none) for (i = 0; i < dim; i++) ytmp[i] = y[i] + h * (b4[0] * k1[i] + b4[1] * k2[i] + b4[2] * k3[i]); /* k4 step */ { int s = GSL_ODEIV_FN_EVAL (sys, t + ah[2] * h, ytmp, k4); if (s != GSL_SUCCESS) { return s; } } #pragma omp parallel for shared(y,h,dim) private(i) default(none) for (i = 0; i < dim; i++) ytmp[i] = y[i] + h * (b5[0] * k1[i] + b5[1] * k2[i] + b5[2] * k3[i] + b5[3] * k4[i]); /* k5 step */ { int s = GSL_ODEIV_FN_EVAL (sys, t + ah[3] * h, ytmp, k5); if (s != GSL_SUCCESS) { return s; } } #pragma omp parallel for shared(y,h,dim) private(i) default(none) for (i = 0; i < dim; i++) ytmp[i] = y[i] + h * (b6[0] * k1[i] + b6[1] * k2[i] + b6[2] * k3[i] + b6[3] * k4[i] + b6[4] * k5[i]); /* k6 step and final sum */ { int s = GSL_ODEIV_FN_EVAL (sys, t + ah[4] * h, ytmp, k6); if (s != GSL_SUCCESS) { return s; } } #pragma omp parallel for shared(y,h,dim) private(i) default(none) for (i = 0; i < dim; i++) { const double d_i = c1 * k1[i] + c3 * k3[i] + c4 * k4[i] + c5 * k5[i] + c6 * k6[i]; y[i] += h * d_i; } /* Derivatives at output */ if (dydt_out != NULL) { int s = GSL_ODEIV_FN_EVAL (sys, t + h, y, dydt_out); if (s != GSL_SUCCESS) { /* Restore initial values */ DBL_MEMCPY (y, y0, dim); return s; } } /* difference between 4th and 5th order */ #pragma omp parallel for shared(y,yerr,h,dim) private(i) default(none) for (i = 0; i < dim; i++) { yerr[i] = h * (ec[1] * k1[i] + ec[3] * k3[i] + ec[4] * k4[i] + ec[5] * k5[i] + ec[6] * k6[i]); } return GSL_SUCCESS; } static int rkf45_reset (void *vstate, size_t dim) { rkf45_state_t *state = (rkf45_state_t *) vstate; DBL_ZERO_MEMSET (state->k1, dim); DBL_ZERO_MEMSET (state->k2, dim); DBL_ZERO_MEMSET (state->k3, dim); DBL_ZERO_MEMSET (state->k4, dim); DBL_ZERO_MEMSET (state->k5, dim); DBL_ZERO_MEMSET (state->k6, dim); DBL_ZERO_MEMSET (state->ytmp, dim); DBL_ZERO_MEMSET (state->y0, dim); return GSL_SUCCESS; } static unsigned int rkf45_order (void *vstate) { rkf45_state_t *state = (rkf45_state_t *) vstate; state = 0; /* prevent warnings about unused parameters */ return 5; } static void rkf45_free (void *vstate) { rkf45_state_t *state = (rkf45_state_t *) vstate; free (state->ytmp); free (state->y0); free (state->k6); free (state->k5); free (state->k4); free (state->k3); free (state->k2); free (state->k1); free (state); } static const gsl_odeiv_step_type rkf45_type = { "rkf45", /* name */ 1, /* can use dydt_in */ 0, /* gives exact dydt_out */ &rkf45_alloc, &rkf45_apply, &rkf45_reset, &rkf45_order, &rkf45_free }; const gsl_odeiv_step_type *gsl_odeiv_step_rkf45 = &rkf45_type;