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Abstract—Among many of the communications capabilities
of the Message Passing Interface (MPI), the manipulation of
datatypes, i.e. contiguous and non-contiguous, regular or not,
memory locations has been heavily underrated and underuti-
lized. This paper introduces an enhancement to the Open MPI
Datatype Engine by incorporating Just-In-Time (JIT) generation
of tailored packing functions. The proposed approach aims at
optimizing data serialization and communication performance
by dynamically generating packing functions tailored to specific
datatypes and communication patterns. Leveraging the JIT pack
mechanism eliminates branching overhead and enables efficient
handling of non-contiguous data movement. Our implementation
demonstrates a maximum speedup of up to 3.65x, showcasing the
potential performance gains achievable in synthetic scenarios.
Furthermore, in real-world application communication patterns,
we achieve a notable speedup of 2x, emphasizing the practical
relevance of our approach in improving communication perfor-
mance for various datatypes and application workloads within
the Open MPI framework.

Index Terms—MPI, Open MPI, JIT, Datatype Engine

I. INTRODUCTION

Efficient data packing is a critical factor in achieving high-
performance communication in parallel and distributed com-
puting systems. The Open MPI (OMPI) library provides a flex-
ible datatype engine that enables optimized data representation
and transfer. However, in real-world application communica-
tion patterns, where data transmission occurs incrementally
via a communication pipeline, traditional packing approaches
may suffer from performance limitations. To address this
challenge, we combine the capabilities of the Open MPI
datatype engine with libgccjit, a just-in-time (JIT) compilation
library, to dynamically generate packing functions tailored for
pipelined communication and memory layouts.

In real-world applications, data is transmitted in segments
through various stages, enabling overlapping of buffer packing
and communication, reducing latency, and improving system
efficiency. Our approach leverages libgccjit to generate two JIT
packing functions: one for packing the entire datatype and an-
other for packing partial datatypes when pipelining is utilized
during communication. These dynamically generated packing
functions optimize data transfer for improved performance.

The default packing approache in OMPI involves traversal
of the internal datatype representation, which incurs overhead
for identifying the type of each datatype element, calls to
(non-inlined) data movement functions (e.g., memcpy), and
conditional branches. While branch instructions are typically

cheap on their own, excessive use of conditional branch in-
structions can lower datatype packing performance, especially
for small datatypes. In contrast, our approach attempts to elim-
inate conditional branches as much as possible by generating
tailored JIT packing functions at commit time, allowing the
compiler to inline data movement functions and optimizing
code generation to further remove branch instructions.

The contributions of our work include:
• The integration of libgccjit with the OMPI datatype

engine to dynamically generate optimized packing func-
tions.

• The provision of JIT packing functions and discussion of
partial packing strategies in the context of JIT datatype
packing

• Identifying the optimal utilization scenarios for JIT pack-
ing functions entails highlighting their advantages, while
also acknowledging the potential drawbacks associated
with their usage.

In this paper, we present the design, implementation, and
evaluation of our approach. We conduct experiments to com-
pare the performance of the Open MPI’s state-of-the-art pack-
ing function with the JIT-generated packing functions for
both entire and partial datatypes. The results demonstrate the
effectiveness of our approach in enhancing communication
performance, especially in pipelined communication scenarios.

Section II delves into an examination of prior work regard-
ing MPI datatypes. In Section III, we elucidate the motivation
behind undertaking this research. Section IV provides details
on the current OMPI datatype engine. Section V provides an
introduction to libgccjit, the fundamental framework employed
in this study. Section VI offers a comprehensive description
of our benchmarks, sample datatypes, and the testing envi-
ronments utilized. Section VII outlines the proposed pack
implementation with libgccjit. Section VIII presents the results
of the experimental evaluation and performance analysis. Fi-
nally, Section IX concludes the paper by emphasizing potential
avenues for future research that aim to optimize packing for
pipelined communication scenarios.

II. RELATED WORK

The ongoing endeavor to enhance MPI datatype support
aims at harnessing available communication resources effec-
tively. However, the lack of performance portability and the
overhead associated with a generic (non-optimized) datatype



engine [10], [13] have hindered the adoption of MPI datatypes
in various scientific applications [2]. Efforts have also been
made to overhaul and to revamp the datatype description
within MPI itself [4], [8], [15], [17] to reduce generic packing
overhead. JIT compilation has also been corporated into the
datatype engine [9], however, a comprehensive reasoning for
the addition of JIT compilation is still needed to differentiate
between best and worst use case.

With the presence of high-performance interconnects like
Infiniband (IB) [1], MPI libraries can leverage efficient net-
work features. Previous studies have demonstrated the advan-
tages of utilizing gather/scatter and Remote Direct Memory
Access (RDMA) [11], [14], [16] as an efficient approach to
eliminate the need for pack and unpack operations during
communication. This allows direct read/write of data blocks
from sender/receiver. To further exploit the interconnect’s
capabilities, Mellanox introduced User-mode Memory Reg-
istration (UMR) [7], enabling RDMA-based access to mul-
tiple non-contiguous data blocks using Scatter-Gather-Lists
(SGL). Zero-copy strategies [5], [6], [11], [16] were also
introduced to reduce the overhead of additional data copies
incurred during packing/unpacking. However, for small data
size segments, using zero-copy or UMR may result in higher
overhead compared to employing an extra copy [7]. Therefore,
enhancing pack/unpack performance remains crucial for small
data segments.

Utilizing x86 Advanced Vector Extensions (AVX) and
Arm’s Scalable Vector Extension (SVE) on the host has also
shown improved time-to-solution in predefined MPI reduction
operations [18]–[20]. Leveraging the vectorization support
of processors can automatically vectorize at runtime, hence,
enhance the efficiency of the datatype engine and narrow the
gap towards achieving peak performance.

III. MOTIVATION

Performance Optimization: memcpy is a standard library
function used to copy blocks of memory, but it may not be
the most efficient solution for copying fixed-length data in
certain scenarios. By using JIT compilation, the code can be
optimized specifically for the fixed length, potentially resulting
in faster and more efficient memcpys. JIT compilation allows
for runtime code generation and optimization, tailoring the
code to the specific data and operation at hand.

Reduced Overhead: Using a fixed length for the length
field in memcpy function eliminates the need to branch into
memcpy function in certain cases, thereby reducing overhead.
This can be beneficial in situations where the length is known
and constant, allowing for more streamlined and efficient data
copying operations.

Simplified Code: The existing Open MPI pack function for
non-contiguous datatype involves numerous checks related to
traversing the datatype representation and bookkeeping. This
results in considerable overhead. To mitigate these issues,
a specialized JIT pack function can be implemented, which
predefines a pack routine. By doing so, both types of overhead
can be efficiently eliminated.

IV. OPEN MPI DATATYPE ENGINE

A. Datatype Engine
In Open MPI, the term datatype engine refers to the un-

derlying infrastructure that handles the creation, manipulation,
and efficient communication of complex data structures within
MPI applications. MPI datatypes allow developers to define in-
memory representation of custom data structures and enable
efficient communication of non-contiguous or structured data
across distributed memory systems.

The datatype engine in Open MPI provides functions and
mechanisms for creating, manipulating, and optimizing MPI
datatypes. It allows developers to define custom datatypes
using various features such as structuring, indexing, subsetting,
and vectorization. These capabilities enable efficient pack-
ing and unpacking of data for communication, reducing the
amount of data transmitted and minimizing communication
overhead.

The Open MPI datatype engine also includes advanced
features like datatype optimization and support for derived
datatypes. It employs sophisticated algorithms and techniques
to optimize the layout and representation of data, ensuring
efficient communication and reducing the impact of data
serialization and deserialization.

By leveraging the Open MPI datatype engine, develop-
ers can enhance the performance of their MPI applications
by utilizing customized data structures and minimizing data
movement and communication costs. It allows for improved
scalability and efficiency in parallel and distributed computing
scenarios, where data communication is a critical aspect of
performance.

B. Communication Pipelining
Communication pipelining is a strategy that allows overlap-

ping communication and computation to minimize the impact
of communication latency on the overall performance of par-
allel applications. In a parallel environment, communication
latency refers to the time it takes for a message to traverse
between processes, which can significantly affect the execution
time of an application.

By employing pipelining techniques, Open MPI is able to
optimize data transfer and reduce the overall time required for
communication. Pipelining achieves this by dividing a commu-
nication operation into multiple smaller tasks or stages, each of
which can be executed concurrently with other computations.
This approach allows Open MPI to overlap communication
tasks with computation, effectively hiding or mitigating the
impact of communication latency.

The pipelining technique in Open MPI can be particularly
beneficial in scenarios where data needs to be transferred
between multiple processes or nodes, such as in parallel matrix
computations, iterative algorithms, or distributed data process-
ing. By overlapping computation with communication, Open
MPI enables more efficient utilization of system resources and
better overall performance.

The process of communication pipelining in Open MPI in-
volves breaking down a communication operation into distinct



stages, each responsible for a specific task. These stages can
include tasks like message preparation, message transmission,
message reception, and data processing. By carefully design-
ing and organizing these stages, Open MPI can overlap their
execution and achieve improved performance.

C. Commit Time Optimization

Datatype commit time optimization is a critical area of
research and development in Open MPI. The aim is to reduce
the overhead incurred during datatype commit operations and
improve the overall performance of parallel applications. As
datasets grow larger and computing clusters become more
extensive, any datatype optimization in the datatype commit
can have a substantial impact on the efficiency of parallel
computations. Ultimately, the goal of Open MPI datatype
commit time optimization is to make parallel computing more
accessible and efficient to harness the full potential of modern
HPC systems and accelerate scientific applications.

V. LIBGCCJIT

libgccjit is a library that provides JIT compilation capabili-
ties as a frontend of the GNU Compiler Collection (GCC).
JIT compilation is a technique where code is compiled at
runtime, allowing for dynamic adjustment and optimization
based on a program’s input data. It provides an API that allows
user to create an abstract syntax tree (AST) representing the
desired code, perform optimizations on the AST, and then
generate machine code from it. This enables applications to
generate and execute code dynamically, which can be useful
in scenarios where runtime code generation is required, such
as in dynamic language interpreters or just-in-time compilers
for virtual machines.

By using libgccjit, developers can take advantage of GCC’s
powerful optimization capabilities and leverage the existing
infrastructure of GCC for code generation. Through libgccjit’s
documentation, user will find it easier to integrate dynamic
code generation into applications among most JIT libraries
and take advantage of the optimizations provided by GCC

VI. BENCHMARKS AND TEST ENVIRONMENT

A. DDTBench

DDTBench [12] is a benchmark suite developed by the
High-Performance Computing group at ETH Zurich. It focuses
on evaluating the performance of distributed data structures in
high-performance computing environments.

The main goal of DDTBench is to provide a standardized
set of tests for assessing the performance of distributed data
structures, specifically those implemented using the MPI.
Distributed data structures are essential in HPC applications,
where data is distributed across multiple nodes or processors
to enable parallel processing.

DDTBench comprises a set of micro-benchmarks that focus
on diverse facets of distributed data structures, encompassing
communication patterns, data distribution, and memory ac-
cess. These benchmarks can help researchers and developers

understand the performance characteristics and limitations of
different distributed data structure implementations.

By running DDTBench, users can measure key performance
metrics such as latency, bandwidth, and scalability of dis-
tributed data structures.

B. Open MPI datatype benchmark

The Open MPI Datatype Benchmark focuses on measuring
the bandwidth and data correctness during the transfer of
entire derived datatypes with a user-given count in a single
core environment. It allows users to create custom data types
that are tailored to their specific application’s needs. Another
crucial aspect of the benchmark is to ensure the correctness
of the data transferred. Data integrity and consistency are
essential in parallel computing, as any errors during data
transmission can lead to incorrect results or program crashes.

C. Sample Datatypes

Within the Open MPI framework, it is feasible to produce
the datatype representation, exemplified in Figure 1. This
output is structured in the following format: basic type, count,
displacement, block length, extent, (total data size).

In the context of the Open MPI datatype benchmark, we
investigate a vector datatype that comprises one eight-byte
element on each cache line (64-byte) with a count of 8.
Additionally, we analyze an indexed datatype, as depicted in
Figure 1a, which consists of a 4-byte data element followed
by a repeating 40-byte element with a count of 9, and finally,
a single 36-byte element at the end.

The DDTBench application comprises 16 distinct data types
distributed among 6 distinct application classes. Nevertheless,
owing to existing constraints in the JIT pack functionality
within the partial pack approach, we have specifically chosen
6 data types from 3 application classes, as detailed in Table I.
The atmospheric science data types depicted in Figure 1b are
composed of multiple vector elements, while the data types
from the other two application classes in Figure 1c are indexed
data types, characterized by a substantial number of elements
of the same length but lacking a constant pattern that can be
unified into a single element.

D. Testing environment

We ran our tests on Intel Xeon Gold 6254 CPU @ 3.10GHz,
which has 1.1 MiB 36 MiB and 49.5 MiB cache for L1, L2
and L3 respectively.

VII. PACK WITH LIBGCCJIT

A. Pack for entire datatype buffer

With JIT compilation capabilities, pack functions can be dy-
namically generated for each derived datatypes. The JIT pack
function translates each element in the datatype representation
into a series of builtin memcpy operations with a fixed length
specified in the length parameter. This enables efficient data
packing by avoiding unnecessary overhead when branching
into memcpy.



Application Class Testname Access Pattern

Atmospheric Science WRF x vec struct of 2D/3D/4D face exchanges in different directions (x,y), using
different (semantically equivalent) datatypes: nested vectors ( vec)WRF y vec

Molecular
Dynamics

LAMMPS full unstructured exchange of different particle types (full/atomic), indexed
datatypesLAMMPS atomic

Geophysical Science SPECFEM3D oc unstructured exchange of acceleration data for different earth layers,
indexed datatypesSPECFEM3D cm

TABLE I: DDTBench Micro-Apps

(a) Indexed Datatype

(b) WRF y vec Datatype

(c) LAMMPS Datatype

Fig. 1: Sample Datatypes

The generated pack function is tailored to the specific
datatype’s layout, resulting in improved serialization perfor-
mance. This dynamic code generation approach with libgccjit
also allows developers to fine-tune the pack function for
different platforms given the correct compilation optimization
enabling parameters.

B. Pack for pipelined datatype buffer

The partial pack function is designed to handle packing
operations within the Open MPI library, specifically for cases
where MPI communication is being pipelined. This function
allows for partial packing, which means that data can be
packed incrementally or in segments, as opposed to packing
the entire data in one step.

The implementation for JIT partial packing is very similar to
packing the whole datatype. Because of JIT packing functions
are extremely restricted to pre-owned knowledge such as pack
routine and memcpy size, the JIT partial packing always
starts and stops at the beginning of a datatype element. The
difference between packing the whole datatype and packing
the partial datatype is that checks for remaining space during
pipeline procedure are being added to the beginning of each
datatype element.

In our work, we extensively examine the use of JIT func-
tions in communication where pipeline for communication is
employed.

C. Merging Pack Functions

Given that JIT pack functions may not encompass all
possible scenarios during packing, we have devised a pack
routine that combines Open MPI’s original packing function,
JIT packing function, and JIT partial packing function. This
routine is divided into three distinct parts:

• Prologue: In the prologue phase, any remaining elements
of a datatype are packed, and subsequently, the JIT partial
pack function is invoked to pack the remaining elements
until the end of the datatype.

• Loop: During the loop phase, the JIT packing function
is called to pack the entire datatype, handling as many
entire datatype from user given count as it can in one go.

• Epilogue: The epilogue phase is akin to the prologue but
in reverse order. After the pack routine has traversed the
prologue and loop phases, the epilogue commences with
JIT partial packing. In cases where there is still space left
for a partial element, the Open MPI packing function is
called to fill the remaining pipeline.

By integrating these three distinct parts, the pack routine
achieves a comprehensive and efficient packing process that
leverages the benefits of JIT packing while addressing specific
packing scenarios not covered by JIT functions. In section
VIII, we also look into the percentages of usage of each pack
function.

D. JIT Pack Limitations

While the JIT pack mechanism endeavors to create a custom
pack function while mitigating the branching overhead, its
limitations are apparent. Specifically, it cannot accommodate
any unknown factors that may lead to a variable in the length
parameter of the memcpy function. We could use variable sizes
for memcpy but that would prevent certain optimizations and
would potentially nullify the benefits of JIT compilation.

The second limitation is concerning the pipeline size during
communication, which may prompt the avoidance of using the
JIT pack mechanism. Given that the JIT pack is pre-generated,
it does not handle segments of the datatype element. In sce-
narios involving large contiguous elements, it is conceivable
that the pipeline size may never cover the entire element’s
length, thus leading to the avoidance of employing the JIT
pack function.



VIII. PERFORMANCE

A. Open MPI datatype benchmark

In the Open MPI datatype benchmark, the focus lies on
evaluating the performance of the JIT packing function that
efficiently packs the entire datatype without the overhead of
conditional branches related to pipelining. This approach aims
to achieve a substantial performance boost by eliminating
all conditional branches within the simple pack function but
overhead for traversing the datatype still exists. Furthermore,
providing comprehensive information (such as loop count, data
access pattern, and fixed length for memcpy function) to the
compiler allows the resulting JIT pack function to be fully
optimized based on the specific architecture.

Figure 2 illustrates the performance results for both vector
and indexed datatypes in the Open MPI datatype benchmark.
The left graph in each figure represents the bandwidth for
different sizes, while the right graph displays the PAPI [3]
counter for conditional branches on a per byte basis.

Figure 2a presents the performance outcomes for the vec-
tor datatype. The JIT performance can achieve a significant
speedup of up to 3.26x within the L1 cache for this datatype.
As the datatype representation is highly optimized (minimal
datatype traversing overhead), the performance gap between
JIT and OMPI pack functions converges for larger sizes. In
such cases, both pack functions hit the main memory latency
and memory wall, and the JIT advantages over conditional
branches become less pronounced.

Figure 2b exhibits the performance results for the in-
dexed datatype. Unlike the vector datatype, the Open MPI’s
pack function spends considerably more time in conditional
branches due to the datatype’s inherent complexity. The
traversal of the datatype representation necessitates conditional
branches that check for the datatype element type and book-
keeping operations to track the positioning inside the datatype.
As a result, the JIT pack function achieves a speedup of up to
3.65x within the L1 cache and maintains a speedup of up to
1.59x within the L2 and L3 caches.

B. DDTBench & JIT Pack Pipelining

In the application environment, the performance is in-
fluenced significantly by the implementation of pipelining
strategies. DDTBench, in contrast to the Open MPI datatype
benchmark, evaluates the data access performance of scientific
applications within a suite of Micro-Apps, while Open MPI
employs pipelined send and receive operations within. While
users have the option to modify the MCA runtime parameter
within Open MPI to choose a specific pipelining strategy, we
have opted to utilize the default pipelining strategy provided
by Open MPI.

DDTBench encompasses 17 different shapes of datatypes.
Each data point within the Micro-Apps shares the same shape
but varies in terms of data size and extent. From this diverse
set of shapes and sizes, we have selected six representative
applications from Table 1 that effectively demonstrate the
utilization of JIT packing in pipelined scenarios.

(a) Vector Datatype

(b) Indexed Datatype

Fig. 2: Open MPI Datatype Benchmark

Top row of Figure 3 illustrates the performance comparison
between pure OMPI and a combination of OMPI pack and
JIT pack. As the data size increases along the x-axis, the
difference between the performance of the two approaches
varies. The utilization of JIT pack is not always 100%, leading
to fluctuating performance differences between the two lines.
For instance, in the WRF application, during small problem
sizes in x-direction, the percentage for JIT goes from 60% to
0%, resulting in performances between the Open MPI’s pack
function and JIT strategy converge.

LAMMPS exhibits the most significant performance en-
hancement when employing JIT-based partial packing func-
tions due to its datatype representation which cannot be
optimized while each datatype elements all have the same and
small sizes (8-byte or 24-byte). This architectural advantage



Fig. 3: Various pack costs from DDTBench test cases

yields a consistent 2x increase in bandwidth across the entire
application.

C. JIT Overhead

Despite the potential bandwidth enhancement offered by JIT
pack in applications, it is crucial to address the inherent side
effects associated with its construction. The process of build-
ing and compiling the JIT pack is executed at commit time,
which results in a significant time overhead, outweighing the
benefits gained from running the JIT pack function just once.
Table II presents an illustrative example of the Micro-App
utilizing datatype WRF y vec, revealing that the overhead
incurred during JIT pack creation can be more than 30,000
times higher than the regular commit time overhead and would
have to call the same pack function at least 4500 times to upset
the creation overhead.

Given the unexpectedly substantial creation overhead, future
endeavors will concentrate on mitigating this issue. Several
proposed solutions include:

• Implementing a mechanism to generate JIT pack func-
tions only when the application necessitates repeated
usage of the JIT pack, at least 30,000 times, to offset
the creation overhead.

• Offloading the commit time optimization and JIT function
generation to a separate thread to reduce the impact on
the main process.

• Establishing a datatype signature and locally storing JIT
pack functions for reuse, thereby avoiding redundant
overhead during commit time.

IX. CONCLUSION

In conclusion, the integration of JIT generation into the
Open MPI Datatype Engine, enabling the creation of tailored
packing functions, has demonstrated significant performance
gains in data serialization and communication. The achieved
maximum speedup of up to 3.65x in benchmark evalua-
tions and 2x in application environments underscores the
effectiveness of our approach in optimizing communication
performance for diverse data types and workloads.

Looking ahead, there are several promising avenues for
future research and development. First, we aim to explore the
possibility of offloading JIT generation during commit time,
reducing the overhead associated with JIT function creation
and enhancing overall performance. Secondly, finding the
optimal balance between the number of pack function calls
and JIT generation overhead is critical to ensuring efficient
time-to-solution for all scientific applications. Additionally,
investigating datatype representation alterations to maximize
the benefits of JIT pack functions holds great potential for
further performance improvements.

In summary, the successful integration of JIT generation
into the Open MPI Datatype Engine represents a significant
advancement in enhancing communication performance. The
observed speedups in both benchmark and application scenar-
ios demonstrate the practical applicability of our approach.
As we delve into future research endeavors, we are optimistic
about refining and extending our JIT-based approach to address
evolving communication challenges in parallel computing sys-
tems.



WRF y vec (kB) 43 55 63 75 90
OMPI (µs) 149 152 177 189 170

JIT (µs) 4583623 4803514 5398213 4950740 5123496

TABLE II: Datatype commit overhead
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