
Chapter 26: The Basic Program/System Interface 837

26.5.1 Definition of getauxval

[Function]unsigned long int getauxval (unsigned long int type)
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

This function is used to inquire about the entries in the auxiliary vector. The type

argument should be one of the ‘AT_’ symbols defined in elf.h. If a matching entry
is found, the value is returned; if the entry is not found, zero is returned and errno

is set to ENOENT.

For some platforms, the key AT_HWCAP is the easiest way to inquire about any instruction
set extensions available at runtime. In this case, there will (of necessity) be a platform-
specific set of ‘HWCAP_’ values masked together that describe the capabilities of the cpu on
which the program is being executed.

26.6 System Calls

A system call is a request for service that a program makes of the kernel. The service
is generally something that only the kernel has the privilege to do, such as doing I/O.
Programmers don’t normally need to be concerned with system calls because there are
functions in the GNU C Library to do virtually everything that system calls do. These
functions work by making system calls themselves. For example, there is a system call that
changes the permissions of a file, but you don’t need to know about it because you can just
use the GNU C Library’s chmod function.

System calls are sometimes called syscalls or kernel calls, and this interface is mostly a
purely mechanical translation from the kernel’s ABI to the C ABI. For the set of syscalls
where we do not guarantee POSIX Thread cancellation the wrappers only organize the
incoming arguments from the C calling convention to the calling convention of the target
kernel. For the set of syscalls where we provided POSIX Thread cancellation the wrappers
set some internal state in the library to support cancellation, but this does not impact the
behaviour of the syscall provided by the kernel.

The GNU C Library includes by reference the Linux man-pages 6.8 documentation to
document the listed syscalls for the Linux kernel. For reference purposes only the latest
Linux man-pages Project (https://www.kernel.org/doc/man-pages/) documentation
can be accessed from the Linux kernel (https://www.kernel.org) website. Where the
syscall has more specific documentation in this manual that more specific documentation
is considered authoritative.

Here is the list of all potential non-cancellable system calls, across all configurations of
the GNU C Library: access acct adjtime alarm arch_prctl bdflush bind cachectl

cacheflush capget capset chdir chflags chmod chown chroot close_range create_

module delete_module dup2 dup3 dup epoll_create1 epoll_ctl eventfd execve

fanotify_init fchdir fchflags fchmod fchownat fchown fgetxattr flistxattr

flock fremovexattr fsconfig fsetxattr fsmount fsopen fspick fstatfs ftruncate

get_kernel_syms getdents getdomain getdtsz getegid geteuid getgid getgroups

gethostid gethostname getitimer getpagesize getpeername getpgid getpgrp

getpid getppid getpriority getresgid getresuid getrlimit getrusage getsid

getsockname getsockopt gettid getuid getxattr init_module inotify_add_watch

Chapter 26: The Basic Program/System Interface 838

inotify_init1 inotify_rm_watch ioctl ioperm iopl killpg kill klogctl lchown

lgetxattr linkat link listen listxattr llistxattr lremovexattr lseek64 lseek

lsetxattr madvise memfd_create mincore mkdirat mkdir mlockall mlock mmap

modify_ldt mount_setattr mount move_mount mprotect munlockall munlock munmap

name_to_handle_at nfsservctl open_tree pciconfig_iobase pciconfig_read

pciconfig_write personality pidfd_getfd pidfd_open pidfd_send_signal pipe2

pivot_root pkey_alloc pkey_free posix_fadvise64 prctl process_madvise

process_mrelease profil ptrace query_module quotactl readlinkat readlink

reboot remap_file_pages removexattr rename revoke rmdir sched_getp sched_gets

sched_primax sched_primin sched_setp sched_sets sched_yield setdomain

setegid seteuid setfsgid setfsuid setgid setgroups sethostid sethostname

setitimer setlogin setns setpgid setpriority setregid setreuid setrlimit

setsid setsockopt setuid setxattr shutdown sigaltstack sigpause sigstack

socketpair socket statfs swapoff swapon symlinkat symlink syncfs sync

syscall_clock_gettime sysinfo sysmips tgkill timerfd_create truncate umask

uname unlinkat unlink unshare uselib utimes vhangup vm86old vm86 wait4

Here’s the corresponding list of cancellable system calls: accept close connect fcntl

open readv read recvfrom recvmsg recv select sendmsg sendto send sigsuspend

writev write

However, there are times when you want to make a system call explicitly, and for that,
the GNU C Library provides the syscall function. syscall is harder to use and less
portable than functions like chmod, but easier and more portable than coding the system
call in assembler instructions.

syscall is most useful when you are working with a system call which is special to your
system or is newer than the GNU C Library you are using. syscall is implemented in an
entirely generic way; the function does not know anything about what a particular system
call does or even if it is valid.

The description of syscall in this section assumes a certain protocol for system calls
on the various platforms on which the GNU C Library runs. That protocol is not defined
by any strong authority, but we won’t describe it here either because anyone who is coding
syscall probably won’t accept anything less than kernel and C library source code as a
specification of the interface between them anyway.

syscall is declared in unistd.h.

[Function]long int syscall (long int sysno, . . .)
Preliminary: | MT-Safe | AS-Safe | AC-Safe | See Section 1.2.2.1 [POSIX Safety
Concepts], page 2.

syscall performs a generic system call.

sysno is the system call number. Each kind of system call is identified by a number.
Macros for all the possible system call numbers are defined in sys/syscall.h

The remaining arguments are the arguments for the system call, in order, and their
meanings depend on the kind of system call. If you code more arguments than the
system call takes, the extra ones to the right are ignored.

The return value is the return value from the system call, unless the system call failed.
In that case, syscall returns -1 and sets errno to an error code that the system call
returned. Note that system calls do not return -1 when they succeed.

Chapter 26: The Basic Program/System Interface 839

If you specify an invalid sysno, syscall returns -1 with errno = ENOSYS.

Example:

#include <unistd.h>

#include <sys/syscall.h>

#include <errno.h>

...

int rc;

rc = syscall(SYS_chmod, "/etc/passwd", 0444);

if (rc == -1)

fprintf(stderr, "chmod failed, errno = %d\n", errno);

This, if all the compatibility stars are aligned, is equivalent to the following preferable
code:

#include <sys/types.h>

#include <sys/stat.h>

#include <errno.h>

...

int rc;

rc = chmod("/etc/passwd", 0444);

if (rc == -1)

fprintf(stderr, "chmod failed, errno = %d\n", errno);

26.7 Program Termination

The usual way for a program to terminate is simply for its main function to return. The
exit status value returned from the main function is used to report information back to the
process’s parent process or shell.

A program can also terminate normally by calling the exit function.

In addition, programs can be terminated by signals; this is discussed in more detail in
Chapter 25 [Signal Handling], page 754. The abort function causes a signal that kills the
program.

26.7.1 Normal Termination

A process terminates normally when its program signals it is done by calling exit. Return-
ing from main is equivalent to calling exit, and the value that main returns is used as the
argument to exit.

[Function]void exit (int status)
Preliminary: | MT-Unsafe race:exit | AS-Unsafe corrupt | AC-Unsafe corrupt lock
| See Section 1.2.2.1 [POSIX Safety Concepts], page 2.

The exit function tells the system that the program is done, which causes it to
terminate the process.

