
1.4.2 - Basic SystemTap syntax and control structures
The output of the odds-evens example is slightly different than shown. It should be:

odds[0] = 1
odds[1] = 3
odds[3] = 7
odds[4] = 9
evens[4] = 8
evens[2] = 4
evens[1] = 2
evens[0] = 0

The last paragraph in this section should simple say "Note that all variable types are
inferred, and that all locals and globals are initialized." The part about array elements
that are set to 0 or NULL being treated as deleted is no longer true.

1.6 - Safety and Security
The MAXMAPENTRIES should be changed to read as follows:
MAXMAPENTRIES - Maximum number of rows in an array if the array size is not
specified explicitly when declared. The default is 2048.

3.1 - Probe definitions
Minor nit... Change "stapprobes(5) manual pages" to "stapprobes(5) man pages".

3.3 - Variables
Last paragraph... Change "regardless of in which script file they are found" to "regardless
of the script file in which they are found". Change "such as due to multiple probe
handlers" to "such as multiple probe handlers".

3.5 - Embedded C
Mentions "see safety.tex". What does this refer to? I can't find it.

3.6 - Embedded C functions
Insert the following after the sentence that ends "...so this is an advanced technique."

"Be especially careful when dereferencing pointers. Use the kread() macro to
dereference any pointers that could potentially be invalid. If you're not sure, error on the
side of caution and use kread(). Also note that all SystemTap functions and probes run
with interrupts disabled, thus you cannot call functions that might sleep from within
embedded C."

4.1 - General systax
3rd paragraph, 2nd sentence - change "event is occurs" to "event occurs".

4.1.2 - Suffixes: .entry, .return
Remove reference to .entry. It's not supported. The absence of a suffix implies .entry.

4.2 - Built-in probe point types (DWARF probes)
2nd bullet - ends with "... as the $return context variable." Add "The entry parameters are
also available, though the function may have changed their values."

Paragraph that begins "In the following probe descriptions..." the word "identifies" is
misspelled.

Paragraph that begins "Some of the source-level variables..." - 2nd sentence - Change
"question mark" to "dollar sign".

4.2.2 - kernel.inline
The example isn't a real example. Change it to:

kernel.inline("path_to_nameidata")
kernel.inline("path_to_nameidata@fs/namei.c")

4.4 - Timer probes
2nd paragraph, last sentence - Change "run concurrently multiple processors" to "run
concurrently on multiple processors".

4th paragraph, change units of time as follows:
• (sec) should be (s or sec)
• (msec) should be (ms or msec)
• (usec) should be (us or usec)
• (nsec) should be (ns or nsec)
• (Hz) should be (hz)

4.5 - Return probes
Insert before the last sentence: "The entry parameters are also accessible in the return
probe's context, though their values may have been changed by the function."

4.6.1 - begin
Change last sentence to: "All global variables must be declared prior to this point."

5.6.1 - Binary string operators
Two sections got accidentally merged into one. Heading should be "Binary numeric
operators", follow by the line "* / % + - >> ...". Then insert a new heading "Binary
string operators" before ". (string contenation)".

5.8.3 - Conditions based on architecture: arch
Add the following sentence to the end of the paragraph: "The currently supported
architecture strings are i386, i686, x86_64, ia64, s390x and ppc64."

6.0.6 - - (delete) <name>
Remove this section.

6.0.12 - Use of plus (+) or minus (-) suffix for ascending or
descending order
Remove this section

6.0.13 - goto
Remove this section.

6.0.17 - return
Change "value of the function is not reserved" to "value of the function is not returned".

7 - Associative Arrays
Change "a comma-separated list of index expressions" to "a comma-separated list of up
to five index expressions".

7.2 - Types of values
Replace everything in this section (including examples) with the following:

Array elements may be set to a number or a string. The type must be consistent
throughout the use of the array. The first assignment to the array defines the elements
type. Unset array elements may be fetched and return a null value (zero or empty string)
as appropriate, but they are not seen by a membership test.

7.3 - Number and types of indexes
Remove this section.

7.4 - Array capacity
Replace all text in this section with the following:

Array sizes can be specified explicitly or allowed to default to the maximum size as
defined by MAXMAPENTRIES. See Section 1.6 on page 10 for details on changing
MAXMAPENTRIES to suit your needs.

You explicitly specify the size of an array as follows:

global ARRAY[<size>]

If you leave off [<size>], the array is created to hold MAXMAPENTRIES number of
elements.

8.3.1 through 8.3.5
Remove all occurrences of "integer". It's unnecessary.

9.1.4 - printf

There are a several differences between SystemTap's version of printf and C's version. I
don't think it's sufficient to say "similar to those of C." Add the following new section
after the paragraph that ends "...for type by the translator."

---- NEW SECTION ---

The formatting string can contain tags that are defined as follows:

%[flags][width][.precision][length]specifier

Where specifier is required and defines the type and the interpretation of the value of the
corresponding argument:

specifier Output Example
d or i Signed decimal 392

o Unsigned octal 610

s String sample

u Unsigned decimal 7235

x Unsigned hexadecimal (lowercase letters) 7fa

X Unsigned hexadecimal (uppercase letters) 7FA

p Pointer address 0x0000000000bc614e

n

Writes a binary value that is the total length of the string
written by printf. The field width specifies the number of
bytes to write. Valid specifications are %n, %1n, %2n
and %4n. The default is 2.

See below

b

Writes a binary value as text. The field width specifies
the number of bytes to write. Valid specifications are
%b, %1b, %2b, %4b and %8b. The default width is 4
(32-bits).

See below

%
A % followed by another % character will write % to
stdout .

The tag can also contain flags, width, .precision and modifiers sub-specifiers, which are
optional and follow these specifications:

flags description

-
Left-justify within the given field width. Right justification is the default (see
width sub-specifier).

+
Precede the result with a plus or minus sign even for positive numbers. By
default, only negative numbers are preceded with a - sign.

(space) If no sign is going to be written, a blank space is inserted before the value.
Used with o, x or X specifiers the value is preceded with 0, 0x or 0X respectively

for non-zero values.

0
Left-pads the number with zeroes instead of spaces, where padding is specified
(see width sub-specifier).

width description

(number)
Minimum number of characters to be printed. If the value to be printed is
shorter than this number, the result is padded with blank spaces. The value is
not truncated even if the result is larger.

.precision description

. number

For integer specifiers (d, i , o, u, x , X): precision specifies the minimum number
of digits to be written. If the value to be written is shorter than this number, the
result is padded with leading zeros. The value is not truncated even if the result
is longer. A precision of 0 means that no character is written for the value 0.
For s : this is the maximum number of characters to be printed. By default all
characters are printed until the ending null character is encountered..
When no precision is specified, the default is 1. If the period is specified
without an explicit value for precision, 0 is assumed.

--- END NEW SECTION ---

I think the binary write example prints too much. Replace it with this:

stap -e ' probe begin { for (i = 97; i < 110; i++)
> printf("%3d: %1b%1b%1b\n", i, i, i-32, i-64);
> exit()}'

This prints:

 97: aA!
 98: bB"
 99: cC#
100: dD$
101: eE%
102: fF&
103: gG'
104: hH(
105: iI)
106: jJ*
107: kK+
108: lL,
109: mM-

The other examples are fine as is.

9.2 - Task context at the probe point
Append the following sentence: "Note that these may not return correct values when a
probe is hit in interrupt context."

9.2.5 - egid
Change "GID" to "group ID".

9.2.6 - euid
Change "UID" to "user ID".

9.2.5 - gid
Change "GID" to "group ID".

9.2.19 - stp_pid
Change "of the stapd daemon" to "of the staprun process".

9.2.22 - task_current
Change "returns the task_struct" to "returns the address of the task_struct". Append the
following sentence: "This address can be passed to the various task_*() functions to
extract more task-specific data."

9.2.23 - task_egid
Change "GID" to "group ID".

9.2.25 - task_euid
Change "UID" to "user ID".

9.2.26 - task_gid
Change "GID" to "group ID".

9.2.28- task_parent
Change "returns the task_struct" to "returns the address of the task_struct". Append the
following sentence: "This address can be passed to the various task_*() functions to
extract more task-specific data."

9.2.33 - task_uid
Change "UID" to "user ID".

9.2.35 - uid
Change "UID" to "user ID" and "process" to "task".

9.3.2 - user_string
Change "this function returns <unknown>" to "this function returns the string
"<unknown>"".

9.5.1 - qsq_blocked
Change last sentence to:

This function returns the fraction of elapsed time during which one or more requests were
on the wait queue.

9.5.2 - qsq_print
Replace last line with the following:
This function prints a line containing the following statistics for the given queue:

• queue name
• average rate of requests per second
• average wait queue length
• average time on the wait queue
• average time to service a request
• percentage of time the wait queue was used
• percentage of time any request was being serviced

9.5.3 - qsq_service_time
Change last sentence to:
This function returns the average time in microseconds required to service a request once
it's removed from the wait queue.

9.9.5 - qsq_throughput
Change last sentence to:
This function returns the average number of requests served per microsecond.

9.5.6 - qsq_utilization
Change last sentence to:
This function returns the average time in microseconds that at least one request was being
serviced.

9.5.7 - qsq_wait_queue_length
Change "of a wait queue" to "of the wait queue".

9.5.8 - qsq_wait_time
Change last sentence to:
This function returns the average time in microseconds that it took for a request to be
serviced (qs_wait() to qs_done()).

9.5.9 - A queue example
After the first sentence, add the following:
It uses the randomize feature of the timer probe to simulate queuing activity.

9.6.2 - probefunc
Change last sentence to:
This function returns the name of the function being probed.

9.6.3 - probemod
Change last sentence to:
This function returns the name of the module containing the probe point.

9.7.1 - ctime
Append to the bottom:
This function does not adjust for timezones. The returned time is always in GMT. Your
script must manually adjust epochsecs before passing it to ctime() if you want to print
local time.

9.7.4 - thread_indent
Append the following example:

The following example uses thread_indent() to trace the functions called in the
drivers/usb/core kernel source. It prints a relative timestamp and the current processes'
name and ID, followed by the appropriate indent and the function name. Note that
"swapper(0)" indicates the kernel is running in interrupt context and there is no valid
current process.

probe kernel.function("*@drivers/usb/core/*") {
 printf ("%s -> %s\n", thread_indent(1), prob efunc())
}

probe kernel.function("*@drivers/usb/core/*").retur n {
 printf ("%s <- %s\n", thread_indent(-1), pro befunc())
}

The output looks like this:

 0 swapper(0): -> usb_hcd_irq
 8 swapper(0): <- usb_hcd_irq
 0 swapper(0): -> usb_hcd_irq
 10 swapper(0): -> usb_hcd_giveback_urb
 16 swapper(0): -> urb_unlink
 22 swapper(0): <- urb_unlink
 29 swapper(0): -> usb_free_urb
 35 swapper(0): <- usb_free_urb
 39 swapper(0): <- usb_hcd_giveback_urb
 45 swapper(0): <- usb_hcd_irq
 0 usb-storage(1338): -> usb_submit_urb
 6 usb-storage(1338): -> usb_hcd_submit_urb
 12 usb-storage(1338): -> usb_get_urb
 18 usb-storage(1338): <- usb_get_urb
 25 usb-storage(1338): <- usb_hcd_submit_urb
 29 usb-storage(1338): <- usb_submit_urb
 0 swapper(0): -> usb_hcd_irq
 7 swapper(0): <- usb_hcd_irq

9.8 - String functions
Change "function" to "functions".

9.8.3 - substr
Change "character start" to "character position start". Change "character stop" to
"character position stop".

Insert the following new string functions in the appropriate spots:

9.8.? strtol
General syntax:

strtol:long(str:string, base:long)

This function converts the string representation of a number to an integer. The base
parameter indicates the number base to assume for the string (e.g. 16 for hex, 8 for octal,
2 for binary).

9.8.? tokenize
General syntax:

tokenize:string(input:string, delim:string)

This function returns the next token in the given input string. The tokens are assumed to
be divided by the first character in the delim string. If the input string is non-NULL, it
returns the first token. If the input string is NULL, it returns the next token in the string
passed in the previous call to tokenize. It returns NULL when no more tokens are
available.

10 For further reference
Replace the sentence that starts "From an unpacked source..." with the following:
From an unpacked source tarball, or CVS directory, the examples in src/examples , the
tapsets in src/tapset , and the test scripts in src/testsuite .

