public inbox for gcc-patches@gcc.gnu.org
 help / color / mirror / Atom feed
From: Prathamesh Kulkarni <prathamesh.kulkarni@linaro.org>
To: Prathamesh Kulkarni <prathamesh.kulkarni@linaro.org>,
	gcc Patches <gcc-patches@gcc.gnu.org>,
	 Richard Biener <richard.guenther@gmail.com>,
	richard.sandiford@arm.com
Subject: Re: Extend fold_vec_perm to fold VEC_PERM_EXPR in VLA manner
Date: Mon, 21 Nov 2022 14:37:10 +0530	[thread overview]
Message-ID: <CAAgBjMmB157AgbgsW6rfWCUqA88UHHVgskNxntkDf4JV=-B8EQ@mail.gmail.com> (raw)
In-Reply-To: <CAAgBjM=wiYMVH80BDRGic=X+2goxFCtXjsydJycRz-f1DxZXhQ@mail.gmail.com>

[-- Attachment #1: Type: text/plain, Size: 10140 bytes --]

On Fri, 4 Nov 2022 at 14:00, Prathamesh Kulkarni
<prathamesh.kulkarni@linaro.org> wrote:
>
> On Mon, 31 Oct 2022 at 15:27, Richard Sandiford
> <richard.sandiford@arm.com> wrote:
> >
> > Prathamesh Kulkarni <prathamesh.kulkarni@linaro.org> writes:
> > > On Wed, 26 Oct 2022 at 21:07, Richard Sandiford
> > > <richard.sandiford@arm.com> wrote:
> > >>
> > >> Sorry for the slow response.  I wanted to find some time to think
> > >> about this a bit more.
> > >>
> > >> Prathamesh Kulkarni <prathamesh.kulkarni@linaro.org> writes:
> > >> > On Fri, 30 Sept 2022 at 21:38, Richard Sandiford
> > >> > <richard.sandiford@arm.com> wrote:
> > >> >>
> > >> >> Richard Sandiford via Gcc-patches <gcc-patches@gcc.gnu.org> writes:
> > >> >> > Prathamesh Kulkarni <prathamesh.kulkarni@linaro.org> writes:
> > >> >> >> Sorry to ask a silly question but in which case shall we select 2nd vector ?
> > >> >> >> For num_poly_int_coeffs == 2,
> > >> >> >> a1 /trunc n1 == (a1 + 0x) / (n1.coeffs[0] + n1.coeffs[1]*x)
> > >> >> >> If a1/trunc n1 succeeds,
> > >> >> >> 0 / n1.coeffs[1] == a1/n1.coeffs[0] == 0.
> > >> >> >> So, a1 has to be < n1.coeffs[0] ?
> > >> >> >
> > >> >> > Remember that a1 is itself a poly_int.  It's not necessarily a constant.
> > >> >> >
> > >> >> > E.g. the TRN1 .D instruction maps to a VEC_PERM_EXPR with the selector:
> > >> >> >
> > >> >> >   { 0, 2 + 2x, 1, 4 + 2x, 2, 6 + 2x, ... }
> > >> >>
> > >> >> Sorry, should have been:
> > >> >>
> > >> >>   { 0, 2 + 2x, 2, 4 + 2x, 4, 6 + 2x, ... }
> > >> > Hi Richard,
> > >> > Thanks for the clarifications, and sorry for late reply.
> > >> > I have attached POC patch that tries to implement the above approach.
> > >> > Passes bootstrap+test on x86_64-linux-gnu and aarch64-linux-gnu for VLS vectors.
> > >> >
> > >> > For VLA vectors, I have only done limited testing so far.
> > >> > It seems to pass couple of tests written in the patch for
> > >> > nelts_per_pattern == 3,
> > >> > and folds the following svld1rq test:
> > >> > int32x4_t v = {1, 2, 3, 4};
> > >> > return svld1rq_s32 (svptrue_b8 (), &v[0])
> > >> > into:
> > >> > return {1, 2, 3, 4, ...};
> > >> > I will try to bootstrap+test it on SVE machine to test further for VLA folding.
> > >> >
> > >> > I have a couple of questions:
> > >> > 1] When mask selects elements from same vector but from different patterns:
> > >> > For eg:
> > >> > arg0 = {1, 11, 2, 12, 3, 13, ...},
> > >> > arg1 = {21, 31, 22, 32, 23, 33, ...},
> > >> > mask = {0, 0, 0, 1, 0, 2, ... },
> > >> > All have npatterns = 2, nelts_per_pattern = 3.
> > >> >
> > >> > With above mask,
> > >> > Pattern {0, ...} selects arg0[0], ie {1, ...}
> > >> > Pattern {0, 1, 2, ...} selects arg0[0], arg0[1], arg0[2], ie {1, 11, 2, ...}
> > >> > While arg0[0] and arg0[2] belong to same pattern, arg0[1] belongs to different
> > >> > pattern in arg0.
> > >> > The result is:
> > >> > res = {1, 1, 1, 11, 1, 2, ...}
> > >> > In this case, res's 2nd pattern {1, 11, 2, ...} is encoded with:
> > >> > with a0 = 1, a1 = 11, S = -9.
> > >> > Is that expected tho ? It seems to create a new encoding which
> > >> > wasn't present in the input vector. For instance, the next elem in
> > >> > sequence would be -7,
> > >> > which is not present originally in arg0.
> > >>
> > >> Yeah, you're right, sorry.  Going back to:
> > >>
> > >> (2) The explicit encoding can be used to produce a sequence of N*Ex*Px
> > >>     elements for any integer N.  This extended sequence can be reencoded
> > >>     as having N*Px patterns, with Ex staying the same.
> > >>
> > >> I guess we need to pick an N for the selector such that each new
> > >> selector pattern (each one out of the N*Px patterns) selects from
> > >> the *same pattern* of the same data input.
> > >>
> > >> So if a particular pattern in the selector has a step S, and the data
> > >> input it selects from has Pi patterns, N*S must be a multiple of Pi.
> > >> N must be a multiple of least_common_multiple(S,Pi)/S.
> > >>
> > >> I think that means that the total number of patterns in the result
> > >> (Pr from previous messages) can safely be:
> > >>
> > >>   Ps * least_common_multiple(
> > >>     least_common_multiple(S[1], P[input(1)]) / S[1],
> > >>     ...
> > >>     least_common_multiple(S[Ps], P[input(Ps)]) / S[Ps]
> > >>   )
> > >>
> > >> where:
> > >>
> > >>   Ps = the number of patterns in the selector
> > >>   S[I] = the step for selector pattern I (I being 1-based)
> > >>   input(I) = the data input selected by selector pattern I (I being 1-based)
> > >>   P[I] = the number of patterns in data input I
> > >>
> > >> That's getting quite complicated :-)  If we allow arbitrary P[...]
> > >> and S[...] then it could also get large.  Perhaps we should finally
> > >> give up on the general case and limit this to power-of-2 patterns and
> > >> power-of-2 steps, so that least_common_multiple becomes MAX.  Maybe that
> > >> simplifies other things as well.
> > >>
> > >> What do you think?
> > > Hi Richard,
> > > Thanks for the suggestions. Yeah I suppose we can initially add support for
> > > power-of-2 patterns and power-of-2 steps and try to generalize it in
> > > follow up patches if possible.
> > >
> > > Sorry if this sounds like a silly ques -- if we are going to have
> > > pattern in selector, select *same pattern from same input vector*,
> > > instead of re-encoding the selector to have N * Ps patterns, would it
> > > make sense for elements in selector to denote pattern number itself
> > > instead of element index
> > > if input vectors are VLA ?
> > >
> > > For eg:
> > > op0 = {1, 2, 3, 4, 1, 2, 3, 5, 1, 2, 3, 6, ...}
> > > op1 = {...}
> > > with npatterns == 4, nelts_per_pattern == 3,
> > > sel = {0, 3} should pick pattern 0 and pattern 3 from op0,
> > > so, res = {1, 4, 1, 5, 1, 6, ...}
> > > Not sure if this is correct tho.
> >
> > This wouldn't allow us to represent things like a "duplicate one
> > element", or "copy the leading N elements from the first input and
> > the other elements from elements N+ of the second input", which we
> > can with the current scheme.
> >
> > The restriction about each (unwound) selector pattern selecting from the
> > same input pattern only applies to case where the selector pattern is
> > stepped (and only applies to the stepped part of the pattern, not the
> > leading element).  The restriction is also local to this code; it
> > doesn't make other VEC_PERM_EXPRs invalid.
> Hi Richard,
> Thanks for the clarifications.
> Just to clarify your approach with an eg:
> Let selected input vector be:
> arg0: {a0, b0, c0, d0,
>           a0 + S, b0 + S, c0 + S, d0 + S,
>           a0 + 2S, b0 + 2S, c0 + 2S, dd + 2S, ...}
> where arg0 has npatterns = 4, and nelts_per_pattern = 3.
>
> Let sel = {0, 0, 1, 2, 2, 4, ...}
> where sel_npatterns = 2 and sel_nelts_per_pattern = 3
>
> So, the first pattern in sel:
> p1: {0, 1, 2, ...} which will select {a0, b0, c0, ...}
> which would be incorrect, since they belong to different patterns in arg0.
> So to select elements from same pattern in arg0, we need to divide p1
> into at least N1 = P_arg0 / S0 = 4 distinct patterns.
>
> Similarly for second pattern in sel:
> p2: {0, 2, 4, ...}, we need to divide it into
> at least N2 = P_arg0 / S1 = 2 distinct patterns.
>
> Select N = max(N1, N2) = 4
> So, the selector will be extended to N * Ps * Es = 4 * 2 * 3 == 24 elements,
> and will be re-encoded with N*Ps = 8 patterns:
>
> re-encoded sel:
> {a0, b0, c0, d0, a0 + S, b0 + S, c0 + S, d0 + S,
> a0 + 2S, b0 + 2S, c0 + 2S, d0 + 2S, a0 + 3S, b0 + 3S, c0 + 3S, d0 + 3S,
> a0 + 4S, b0 + 4S, c0 + 4s, d0 + 4S, a0 + 5S, b0 + 5S, c0 + 5S, d0 + 5S,
> ...}
>
> with 8 patterns,
> p1: {a0, a0 + 2S, a0 + 4S, ...}
> p2: {b0, b0 + 2S, b0 + 4S, ...}
> ...
> which select elements from same pattern from same input vector.
> Does this look correct ?
>
> For feasibility, we can check initially that sel_npatterns, arg0_npatterns,
> arg1_npatterns are powers of 2 and for each stepped pattern,
> it's stepped size S is a power of 2. I suppose this will be sufficient
> to ensure that sel can be re-encoded with N*Ps npatterns
> such that each new pattern selects elements from same pattern
> of the input vector ?
>
> Then compute N:
> N = 1;
> for (every pattern p in sel)
>   {
>      op = corresponding input vector for pattern;
>      S = step_size (p);
>      N_pattern = max (S, npatterns (op)) / S;
>      N = max(N, N_pattern)
>   }
>
> and re-encode selector with N*Ps patterns.
> I guess rest of the patch will mostly stay the same.
Hi,
I have attached a POC patch based on the above approach.
For the above eg:
arg0 = {1, 11, 2, 12, 3, 13, ...} // npatterns = 2, nelts_per_pattern = 3,
and
sel = {0, 0, 0, 1, 0, 2, ...}
with sel_npatterns == 2 and sel_nelts_per_pattern == 3.

For pattern, {0, 1, 2, ...} it will select elements from different
patterns from arg0, which is incorrect.
So we choose N = P1/S = 2/1 = 2, where P1 is number of elements in arg0.
So re-encoded sel = { 0, 0, 0, 1, 0, 2, 0, 3, 0, 4, 0, 5, ...}
with following patterns:
p1 = { 0, ... }
p2 = { 0, 2, 4, ... }
p3 = { 0, ... }
p4 = { 1, 3, 5, ... }
which should be correct since each element from the respective
patterns in sel chooses
elements from same pattern from arg0.
So, res = { 1, 1, 1, 11, 1, 2, 1, 12, 1, 3, 1, 13, ... }
Does this look correct ?

Thanks,
Prathamesh

>
> Thanks,
> Prathamesh
>
> >
> > Thanks,
> > Richard
> >
> > >
> > > Thanks,
> > > Prathamesh
> > >>
> > >> > I suppose it's fine since if the user defines mask to have pattern {0,
> > >> > 1, 2, ...}
> > >> > they intended result to have pattern with above encoding.
> > >> > Just wanted to confirm if this is correct ?
> > >> >
> > >> > 2] Could you please suggest a test-case for S < 0 ?
> > >> > I am not able to come up with one :/
> > >>
> > >> svrev is one way of creating negative steps.
> > >>
> > >> Thanks,
> > >> Richard
> > >>
> > >> >
> > >> > Thanks,
> > >> > Prathamesh
> > >> >>
> > >> >> > which is an interleaving of the two patterns:
> > >> >> >
> > >> >> >   { 0, 2, 4, ... }                  a0 = 0, a1 = 2, S = 2
> > >> >> >   { 2 + 2x, 4 + 2x, 6 + 2x }        a0 = 2 + 2x, a1 = 4 + 2x, S = 2

[-- Attachment #2: gnu-790-5.txt --]
[-- Type: text/plain, Size: 12104 bytes --]

diff --git a/gcc/fold-const.cc b/gcc/fold-const.cc
index 9f7beae14e5..2f45979d4ac 100644
--- a/gcc/fold-const.cc
+++ b/gcc/fold-const.cc
@@ -85,6 +85,9 @@ along with GCC; see the file COPYING3.  If not see
 #include "vec-perm-indices.h"
 #include "asan.h"
 #include "gimple-range.h"
+#include <algorithm>
+#include "tree-pretty-print.h"
+#include "print-tree.h"
 
 /* Nonzero if we are folding constants inside an initializer or a C++
    manifestly-constant-evaluated context; zero otherwise.
@@ -10494,38 +10497,55 @@ fold_mult_zconjz (location_t loc, tree type, tree expr)
 			  build_zero_cst (itype));
 }
 
+/* Check if PATTERN in SEL selects either ARG0 or ARG1,
+   and return the selected arg, otherwise return NULL_TREE.  */
 
-/* Helper function for fold_vec_perm.  Store elements of VECTOR_CST or
-   CONSTRUCTOR ARG into array ELTS, which has NELTS elements, and return
-   true if successful.  */
-
-static bool
-vec_cst_ctor_to_array (tree arg, unsigned int nelts, tree *elts)
+static tree
+get_vector_for_pattern (tree arg0, tree arg1,
+			const vec_perm_indices &sel, unsigned pattern,
+			unsigned sel_npatterns, int &S)
 {
-  unsigned HOST_WIDE_INT i, nunits;
+  unsigned sel_nelts_per_pattern = sel.encoding ().nelts_per_pattern ();
 
-  if (TREE_CODE (arg) == VECTOR_CST
-      && VECTOR_CST_NELTS (arg).is_constant (&nunits))
+  poly_uint64 n1 = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0));
+  poly_uint64 nsel = sel.length ();
+  poly_uint64 esel;
+
+  if (!multiple_p (nsel, sel_npatterns, &esel))
+    return NULL_TREE;
+
+  poly_uint64 a1 = sel[pattern + sel_npatterns];
+  S = 0;
+  if (sel_nelts_per_pattern == 3)
     {
-      for (i = 0; i < nunits; ++i)
-	elts[i] = VECTOR_CST_ELT (arg, i);
+      poly_uint64 a2 = sel[pattern + 2 * sel_npatterns];
+      S = (a2 - a1).to_constant ();
+      if (S != 0 && !pow2p_hwi (S))
+	return NULL_TREE;
     }
-  else if (TREE_CODE (arg) == CONSTRUCTOR)
+
+  poly_uint64 ae = a1 + (esel - 2) * S;
+  uint64_t q1, qe;
+  poly_uint64 r1, re;
+
+  if (!can_div_trunc_p (a1, n1, &q1, &r1)
+      || !can_div_trunc_p (ae, n1, &qe, &re)
+      || (q1 != qe))
+    return NULL_TREE;
+
+  tree arg = ((q1 & 1) == 0) ? arg0 : arg1;
+
+  if (S < 0)
     {
-      constructor_elt *elt;
+      poly_uint64 a0 = sel[pattern];
+      if (!known_eq (S, a1 - a0))
+        return NULL_TREE;
 
-      FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (arg), i, elt)
-	if (i >= nelts || TREE_CODE (TREE_TYPE (elt->value)) == VECTOR_TYPE)
-	  return false;
-	else
-	  elts[i] = elt->value;
+      if (!known_gt (re, VECTOR_CST_NPATTERNS (arg)))
+        return NULL_TREE;
     }
-  else
-    return false;
-  for (; i < nelts; i++)
-    elts[i]
-      = fold_convert (TREE_TYPE (TREE_TYPE (arg)), integer_zero_node);
-  return true;
+  
+  return arg;
 }
 
 /* Attempt to fold vector permutation of ARG0 and ARG1 vectors using SEL
@@ -10539,41 +10559,135 @@ fold_vec_perm (tree type, tree arg0, tree arg1, const vec_perm_indices &sel)
   unsigned HOST_WIDE_INT nelts;
   bool need_ctor = false;
 
-  if (!sel.length ().is_constant (&nelts))
-    return NULL_TREE;
-  gcc_assert (known_eq (TYPE_VECTOR_SUBPARTS (type), nelts)
-	      && known_eq (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)), nelts)
-	      && known_eq (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)), nelts));
+  gcc_assert (known_eq (TYPE_VECTOR_SUBPARTS (type), sel.length ())
+	      && known_eq (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)),
+			   TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1))));
   if (TREE_TYPE (TREE_TYPE (arg0)) != TREE_TYPE (type)
       || TREE_TYPE (TREE_TYPE (arg1)) != TREE_TYPE (type))
     return NULL_TREE;
 
-  tree *in_elts = XALLOCAVEC (tree, nelts * 2);
-  if (!vec_cst_ctor_to_array (arg0, nelts, in_elts)
-      || !vec_cst_ctor_to_array (arg1, nelts, in_elts + nelts))
+  unsigned res_npatterns = 0;
+  unsigned res_nelts_per_pattern = 0;
+  unsigned sel_npatterns = 0;
+  tree *vector_for_pattern = NULL;
+
+  if (TREE_CODE (arg0) == VECTOR_CST
+      && TREE_CODE (arg1) == VECTOR_CST
+      && !sel.length ().is_constant ())
+    {
+      unsigned arg0_npatterns = VECTOR_CST_NPATTERNS (arg0);
+      unsigned arg1_npatterns = VECTOR_CST_NPATTERNS (arg1);
+      sel_npatterns = sel.encoding ().npatterns ();
+
+      if (!pow2p_hwi (arg0_npatterns)
+	  || !pow2p_hwi (arg1_npatterns)
+	  || !pow2p_hwi (sel_npatterns))
+        return NULL_TREE;
+
+      unsigned N = 1;
+      vector_for_pattern = XALLOCAVEC (tree, sel_npatterns);
+      for (unsigned i = 0; i < sel_npatterns; i++)
+	{
+	  int S = 0;
+	  tree op = get_vector_for_pattern (arg0, arg1, sel, i, sel_npatterns, S);
+	  if (!op)
+	    return NULL_TREE;
+	  vector_for_pattern[i] = op;
+	  unsigned N_pattern =
+	    (S > 0) ? std::max<int>(S, VECTOR_CST_NPATTERNS (op)) / S : 1;
+	  N = std::max (N, N_pattern);
+	}
+      
+      res_npatterns
+        = std::max (sel_npatterns * N, std::max (arg0_npatterns, arg1_npatterns));
+
+      res_nelts_per_pattern
+	= std::max(sel.encoding ().nelts_per_pattern (),
+		   std::max (VECTOR_CST_NELTS_PER_PATTERN (arg0),
+			     VECTOR_CST_NELTS_PER_PATTERN (arg1)));
+    }
+  else if (sel.length ().is_constant (&nelts)
+	   && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)).is_constant ()
+	   && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)).to_constant () == nelts)
+    {
+      /* For VLS vectors, treat all vectors with
+	 npatterns = nelts, nelts_per_pattern = 1. */
+      res_npatterns = sel_npatterns = nelts;
+      res_nelts_per_pattern = 1;
+      vector_for_pattern = XALLOCAVEC (tree, nelts);
+      for (unsigned i = 0; i < nelts; i++)
+        {
+	  HOST_WIDE_INT index;
+	  if (!sel[i].is_constant (&index))
+	    return NULL_TREE;
+	  vector_for_pattern[i] = (index < nelts) ? arg0 : arg1;	
+	}
+    }
+  else
     return NULL_TREE;
 
-  tree_vector_builder out_elts (type, nelts, 1);
-  for (i = 0; i < nelts; i++)
+  tree_vector_builder out_elts (type, res_npatterns,
+				res_nelts_per_pattern);
+  unsigned res_nelts = res_npatterns * res_nelts_per_pattern;
+  for (unsigned i = 0; i < res_nelts; i++)
     {
-      HOST_WIDE_INT index;
-      if (!sel[i].is_constant (&index))
-	return NULL_TREE;
-      if (!CONSTANT_CLASS_P (in_elts[index]))
-	need_ctor = true;
-      out_elts.quick_push (unshare_expr (in_elts[index]));
+      /* For VLA vectors, i % sel_npatterns would give the original
+         pattern the element belongs to, which is sufficient to get the arg.
+	 Even if sel_npatterns has been multiplied by N,
+	 they will always come from the same input vector.
+	 For VLS vectors, sel_npatterns == res_nelts == nelts,
+	 so i % sel_npatterns == i since i < nelts */
+       
+      tree arg = vector_for_pattern[i % sel_npatterns];
+      unsigned HOST_WIDE_INT index;
+
+      if (arg == arg0)
+	{
+	  if (!sel[i].is_constant ())
+	    return NULL_TREE;
+	  index = sel[i].to_constant ();
+	}
+      else
+        {
+	  gcc_assert (arg == arg1);
+	  poly_uint64 n1 = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0));
+	  uint64_t q;
+	  poly_uint64 r;
+
+	  /* Divide sel[i] by input vector length, to obtain remainder,
+	     which would be the index for either input vector.  */
+	  if (!can_div_trunc_p (sel[i], n1, &q, &r))
+	    return NULL_TREE;
+
+	  if (!r.is_constant (&index))
+	    return NULL_TREE;
+	}
+
+      tree elem;
+      if (TREE_CODE (arg) == CONSTRUCTOR)
+        {
+	  gcc_assert (index < nelts);
+	  if (index >= vec_safe_length (CONSTRUCTOR_ELTS (arg)))
+	    return NULL_TREE;
+	  elem = CONSTRUCTOR_ELT (arg, index)->value;
+	  if (VECTOR_TYPE_P (TREE_TYPE (elem)))
+	    return NULL_TREE;
+	  need_ctor = true;
+	}
+      else
+        elem = vector_cst_elt (arg, index);
+      out_elts.quick_push (elem);
     }
 
   if (need_ctor)
     {
       vec<constructor_elt, va_gc> *v;
-      vec_alloc (v, nelts);
-      for (i = 0; i < nelts; i++)
+      vec_alloc (v, res_nelts);
+      for (i = 0; i < res_nelts; i++)
 	CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, out_elts[i]);
       return build_constructor (type, v);
     }
-  else
-    return out_elts.build ();
+  return out_elts.build ();
 }
 
 /* Try to fold a pointer difference of type TYPE two address expressions of
@@ -16910,6 +17024,97 @@ test_vec_duplicate_folding ()
   ASSERT_TRUE (operand_equal_p (dup5_expr, dup5_cst, 0));
 }
 
+static tree
+build_vec_int_cst (unsigned npatterns, unsigned nelts_per_pattern,
+		   int *encoded_elems)
+{
+  scalar_int_mode int_mode = SCALAR_INT_TYPE_MODE (integer_type_node);
+  machine_mode vmode = targetm.vectorize.preferred_simd_mode (int_mode);
+  //machine_mode vmode = VNx4SImode;
+  poly_uint64 nunits = GET_MODE_NUNITS (vmode);
+  tree vectype = build_vector_type (integer_type_node, nunits);
+
+  tree_vector_builder builder (vectype, npatterns, nelts_per_pattern);
+  for (unsigned i = 0; i < npatterns * nelts_per_pattern; i++)
+    builder.quick_push (build_int_cst (integer_type_node, encoded_elems[i]));
+  return builder.build ();
+}
+
+static void
+test_vec_perm_vla_folding ()
+{
+  int arg0_elems[] = { 1, 11, 2, 12, 3, 13 };
+  tree arg0 = build_vec_int_cst (2, 3, arg0_elems);
+
+  int arg1_elems[] = { 21, 31, 22, 32, 23, 33 };
+  tree arg1 = build_vec_int_cst (2, 3, arg1_elems);
+
+  if (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)).is_constant ()
+      || TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)).is_constant ())
+    return;
+
+  /* Case 1: For mask: {0, 1, 2, ...}, npatterns == 1, nelts_per_pattern == 3,
+     should select arg0.  */
+  {
+    int mask_elems[] = {0, 1, 2};
+    tree mask = build_vec_int_cst (1, 3, mask_elems);
+    tree res = fold_ternary (VEC_PERM_EXPR, TREE_TYPE (arg0), arg0, arg1, mask);
+    ASSERT_TRUE (res != NULL_TREE);
+    ASSERT_TRUE (VECTOR_CST_NPATTERNS (res) == 2);
+    ASSERT_TRUE (VECTOR_CST_NELTS_PER_PATTERN (res) == 3);
+
+    unsigned res_nelts = vector_cst_encoded_nelts (res);
+    for (unsigned i = 0; i < res_nelts; i++)
+      ASSERT_TRUE (operand_equal_p (VECTOR_CST_ELT (res, i),
+				    VECTOR_CST_ELT (arg0, i), 0));
+  }
+
+  /* Case 2: For mask: {4, 5, 6, ...}, npatterns == 1, nelts_per_pattern == 3,
+     should return NULL because for len = 4 + 4x,
+     if x == 0, we select from arg1
+     if x > 0, we select from arg0
+     and thus cannot determine result at compile time.  */
+  {
+    int mask_elems[] = {4, 5, 6};
+    tree mask = build_vec_int_cst (1, 3, mask_elems);
+    tree res = fold_ternary (VEC_PERM_EXPR, TREE_TYPE (arg0), arg0, arg1, mask);
+    gcc_assert (res == NULL_TREE);
+  }
+
+  /* Case 3:
+     mask: {0, 0, 0, 1, 0, 2, ...} 
+     npatterns == 2, nelts_per_pattern == 3
+     Pattern {0, ...} should select arg0[0], ie, 1.
+     Pattern {0, 1, 2, ...} should select arg0: {1, 11, 2, ...},
+     so res = {1, 1, 1, 11, 1, 2, ...}.  */
+  {
+    int mask_elems[] = {0, 0, 0, 1, 0, 2};
+    tree mask = build_vec_int_cst (2, 3, mask_elems);
+    tree res = fold_ternary (VEC_PERM_EXPR, TREE_TYPE (arg0), arg0, arg1, mask);
+    ASSERT_TRUE (VECTOR_CST_NPATTERNS (res) == 4);
+    ASSERT_TRUE (VECTOR_CST_NELTS_PER_PATTERN (res) == 3);
+
+    /* Check encoding: {1, 1, 1, 11, 1, 2, 1, 12, 1, 3, 1, 13, ...}  */
+    int res_encoded_elems[] = {1, 1, 1, 11, 1, 2, 1, 12, 1, 3, 1, 13};
+    for (unsigned i = 0; i < vector_cst_encoded_nelts (res); i++)
+      ASSERT_TRUE (wi::to_wide(VECTOR_CST_ELT (res, i)) == res_encoded_elems[i]);
+  }
+
+  /* Case 4:
+     mask: {0, 4 + 4x, 0, 5 + 4x, 0, 6 + 4x, ...}
+     npatterns == 2, nelts_per_pattern == 3
+     Pattern {0, ...} should select arg0[1]
+     Pattern {4 + 4x, 5 + 4x, 6 + 4x, ...} should select from arg1, since:
+     a1 = 5 + 4x
+     ae = (5 + 4x) + ((4 + 4x) / 2 - 2) * 1
+        = 5 + 6x
+     Since a1/4+4x == ae/4+4x == 1, we select arg1[0], arg1[1], arg1[2], ...
+     res: {1, 21, 1, 31, 1, 22, ... }
+     FIXME: How to build vector with poly_int elems ?  */
+
+  /* Case 5: S < 0.  */
+}
+
 /* Run all of the selftests within this file.  */
 
 void
@@ -16918,6 +17123,7 @@ fold_const_cc_tests ()
   test_arithmetic_folding ();
   test_vector_folding ();
   test_vec_duplicate_folding ();
+  test_vec_perm_vla_folding ();
 }
 
 } // namespace selftest

  reply	other threads:[~2022-11-21  9:07 UTC|newest]

Thread overview: 29+ messages / expand[flat|nested]  mbox.gz  Atom feed  top
2022-08-17 12:39 Prathamesh Kulkarni
2022-08-29  6:08 ` Prathamesh Kulkarni
2022-09-05  8:53   ` Prathamesh Kulkarni
2022-09-05 10:21 ` Richard Sandiford
2022-09-09 13:59   ` Prathamesh Kulkarni
2022-09-12 14:27     ` Richard Sandiford
2022-09-15 12:26       ` Prathamesh Kulkarni
2022-09-20 12:39         ` Richard Sandiford
2022-09-23 11:59           ` Prathamesh Kulkarni
2022-09-23 16:03             ` Richard Sandiford
2022-09-26 19:33               ` Prathamesh Kulkarni
2022-09-26 20:29                 ` Richard Sandiford
2022-09-30 14:41                   ` Prathamesh Kulkarni
2022-09-30 16:00                     ` Richard Sandiford
2022-09-30 16:08                       ` Richard Sandiford
2022-10-10 10:48                         ` Prathamesh Kulkarni
2022-10-17 10:32                           ` Prathamesh Kulkarni
2022-10-24  8:12                             ` Prathamesh Kulkarni
2022-10-26 15:37                           ` Richard Sandiford
2022-10-28 14:46                             ` Prathamesh Kulkarni
2022-10-31  9:57                               ` Richard Sandiford
2022-11-04  8:30                                 ` Prathamesh Kulkarni
2022-11-21  9:07                                   ` Prathamesh Kulkarni [this message]
2022-11-28 11:44                                     ` Prathamesh Kulkarni
2022-12-06 15:30                                     ` Richard Sandiford
2022-12-13  6:05                                       ` Prathamesh Kulkarni
2022-12-26  4:26                                         ` Prathamesh Kulkarni
2023-01-17 11:54                                           ` Prathamesh Kulkarni
2023-02-01 10:01                                             ` Prathamesh Kulkarni

Reply instructions:

You may reply publicly to this message via plain-text email
using any one of the following methods:

* Save the following mbox file, import it into your mail client,
  and reply-to-all from there: mbox

  Avoid top-posting and favor interleaved quoting:
  https://en.wikipedia.org/wiki/Posting_style#Interleaved_style

* Reply using the --to, --cc, and --in-reply-to
  switches of git-send-email(1):

  git send-email \
    --in-reply-to='CAAgBjMmB157AgbgsW6rfWCUqA88UHHVgskNxntkDf4JV=-B8EQ@mail.gmail.com' \
    --to=prathamesh.kulkarni@linaro.org \
    --cc=gcc-patches@gcc.gnu.org \
    --cc=richard.guenther@gmail.com \
    --cc=richard.sandiford@arm.com \
    /path/to/YOUR_REPLY

  https://kernel.org/pub/software/scm/git/docs/git-send-email.html

* If your mail client supports setting the In-Reply-To header
  via mailto: links, try the mailto: link
Be sure your reply has a Subject: header at the top and a blank line before the message body.
This is a public inbox, see mirroring instructions
for how to clone and mirror all data and code used for this inbox;
as well as URLs for read-only IMAP folder(s) and NNTP newsgroup(s).